A multilevel model for description of thermomechanical fracture of refractory linings of high-temperature equipment
DOI:
https://doi.org/10.31181/rme20028122022zKeywords:
Refractory, High-temperature equipment, Linings, Fracture, Finite-elements methodAbstract
The paper considers the issue of determining the resource of refractory linings of high-temperature industrial units by mathematical modeling of crack growth in the framework of a multilevel approach. The study was carried out using the finite element simulation and experimental data on the thermophysical and mechanical characteristics of refractory. At the level of lining, zones of increased cracking (areas with the highest level of thermally induced stresses and strains) were identified. Next, on the scales of individual products and representative volumes of refractory material, crack growth was simulated with use of previously calculated stresses and strains in the lining as boundary conditions. The relationship between thermal impact on the refractory lining of equipment and its stress-strain state is shown. Taking into account the known stress-strain state, the method for determining the direction of crack growth is considered.
References
Andreev, K., Sinnema, S., Rekik, A., Allaoui, S., Blond, E. & Gasser, A. (2012). Compressive behaviour of dry joints in refractory ceramic masonry. Construction and Building Materials, 34, 402-408. https://doi.org/10.1016/j.conbuildmat.2012.02.024
Andreev K., Luchini B., Rodrigues M.J. & Lino Alves, J. (2020). Role of fatigue in damage development of refractories under thermal shock loads of different intensity. Ceramics International, 46(13), 20707-20716. https://doi.org/10.1016/j.ceramint.2020.04.235.
Andreev, K., Yin, Y., Luchini, B. & Sabirov, I. (2021). Failure of refractory masonry material under monotonic and cyclic loading – Crack propagation analysis. Construction and Building Materials, 299, 124-203. https://doi.org/10.1016/j.conbuildmat.2021.124203
Gasser, A. & Boisse, P. (2001). Experimental and Numerical Analyses of Thermomechanical Refractory Lining Behaviour. Proceedings of the Institution of Mechanical Engineers, 41-53.
Goldstein R. V. & Perelmuter M. N. (1999). Modeling of bonding at an interface crack. Internationl Journal of Fracture, 99(1-2), 53-79. https://doi.org/10.1023/A:1018382321949
Goldstein, R.V. & Osipenko, N.M. (2019). About Compression Fracture. Physical Mesomechanics, 22, 439-455. https://doi.org/10.1134/S1029959919060018
Grigoriev, A.S., Zabolotskiy, A.V., Shilko, E.V., Dmitriev, A.I. & Andreev, K. (2021). Analysis of the Quasi-Static and Dynamic Fracture of the SilicaRefractory Using the Mesoscale Discrete Element Modelling. Materials, 14, 7376. https://doi.org/10.3390/ma14237376
Grigoriev, A.S., Danilchenko, S.V., Dmitriev, A.I., Zabolotskii, A.V., Migashkin, A.O., Turchin, M.Y., Khadyev, V.T. & Shilko, E.V. (2022). Computer simulation of supporting layers of steel ladle lining influence on localization and growth direction of thermal cracks. Novie ogneupory, 10, 3 – 15. (In Russian).
Gutkin, M.Yu., Ovidko, I.A. & Skiba, N.V. (2007). Effect of inclusions on heterogeneous crack nucleation in nanocomposites. Physics of the Solid State, 49, 261–266. https://doi.org/10.1134/S1063783407020138
Kingery, W.D. (1960). Introduction to ceramics. New York: Wiley.
Kuliev V.D. & Morozov E.M. (2016). Doklady Physics, 61, 502-504.
Lee, W.E., & Moore, R.E. (1998). Evolution of in situ refractories in the 20th century, Journal of the American Ceramic Society, 81, 1385–1410. https://doi.org/10.1111/j.1151-2916.1998.tb02497.x
Lu J. & Fleck N.A. (1998). The thermal shock resistance of solids. Acta Materialia, 46(13), 4755-4768. https://doi.org/10.1016/S1359-6454(98)00127-X
Ning, J.G., Ren H.L. & Fang M. J. (2014). Research on the process of micro-crack damage evolution and coalescence in brittle materials. Engineering Failure Analysis, 41, 65-72. https://doi.org/10.1016/j.engfailanal.2013.08.001
Nomura, O. & Uchida, S. (2000). Heat-Transfer Analysis of Various Ladle Refractory Linings. Shinagawa Technical Report, 23-34.
Perelmuter, M.N. (2020) Analysis of Crack Resistance of Interfaces Between Materials. Mechanics of Solids, 55, 536–551. https://doi.org/10.3103/S0025654420040123
Romanov, A.E. & Vladimirov. V.I. (1992). In: Dislocations in solids / Ed. F.R.N. Nabarro. North Holland. Amsterdam. 9. 191.
Sadik, C., Moudden, O., El-Bouari, A. & El-Amrani, I.-E. (2016). Review on the elaboration and characterization of ceramics refractories based on magnesite and dolomite. Journal of Asian Ceramic Societies, 4(3), 219-233. https://doi.org/10.1016/j.jascer.2016.06.006
Sajjadi S.H., Salimi-Majd D. & Ostad M.J. (2016) Development of a brittle fracture criterion for prediction of crack propagation path under general mixed mode loading. Engineering Fracture Mechanics, 155, 36-48. https://doi.org/10.1016/j.engfracmech.2016.01.015
Shi, S., Li, G., Jiang, G., Xie, L. & Liu, J. (2013). Temperature and Thermal Stress Analysis of Refractory Products. Sensors & Transducers, 21, 53-57. https://www.sensorsportal.com/HTML/DIGEST/may_2013/Special_issue/P_SI_341.pdf
Zhu T., Li, Y., Sang, S. & Xie, Z. (2017). Fracture behavior of low carbon MgO–C refractories using the wedge splitting test. Journal of the European Ceramic Society, 37(4), 1789-1797. https://doi.org/10.1016/j.jeurceramsoc.2016.11.013
Stueckelschweiger, M., Gruber, D., Jin, S. & Harmuth, H. (2019). Creep testing of carbon containing refractories under reducing conditions, Ceramics International, 45(8). 9776-9781. https://doi.org/10.1016/j.ceramint.2019.02.013
Varshneya, A. K., Burlingame, N. H. & Schultze, W. H. (1990). Parallel Plate Viscometry to Study Deformation-Induced Viscosity Changes in Glass. Glastechnische Berichte, 63K, 447-459.
Zabolotskii, A.V. (2011). Mathematical simulation of the thermal stability of magnesium oxide. Refractories and Industrial Ceramics, 52(3), 170 - 177. https://doi.org/10.1007/s11148-011-9390-1
Zabolotskiy, A.V., Turchin, M.Y., Khadyev, V.T. & Migashkin, A.O. (2020). Numerical investigation of refractory stress-strain condition under transient thermal load. AIP Conference Proceedings, 2310, 020355. https://doi.org/10.1063/5.0034479
Zabolotskiy, A.V., Turchin, M.Y., Khadyev, V.T., Migashkin, A.O. (2023). Simulation of Crack Nucleation in Homogeneous Material Containing Regularly Spaced Pores under the Action of Uniaxial Compression. AIP Conference Proceedings, (in press).