Dynamics of supersonic N-crowdions in fcc metals
DOI:
https://doi.org/10.31181/rme200101054bKeywords:
Reactor materials; Irradiation; Point defects; Supersonic crowdion; Molecular dynamicsAbstract
Crowdion is an interstitial atom located in a close-packed atomic row. It is an important point defect participating in relaxation processes occurring in metals and alloys under irradiation, effectively transferring mass and energy. In recent works of the authors, the concept of a supersonic crowdion was extended to a supersonic N-crowdion, in which not one, but N atoms move with high speed along a close-packed row. An experimental study of interstitial atoms moving along a crystal lattice at supersonic speeds encounters serious technical difficulties, and the most effective method for studying them is the molecular dynamics method. In this regard, a numerical study of dynamics of supersonic crowdions in metals is very important. In the present study, the molecular dynamics method was used to analyze the motion of supersonic 1- and 2-crowdions in fcc metals Ni, Al, Cu. The calculations were carried out using the LAMMPS software package and many-body potentials. The N-crowdion was excited by setting the same initial velocity to N neighboring atoms along a close-packed row. It was found that the mean free path of a 2-crowdion in pure metals can reach values that are 3 times greater than the mean free path of a 1-crowdion having the same initial energy. The results obtained indicate a higher efficiency of 2-crowdions in mass transfer in the studied metals. In further works, the possibility of launching supersonic 2-crowdions by bombarding the crystal surface with biatomic molecules will be analyzed.
References
Babicheva R. I., Evazzade I., Korznikova E. A., Shepelev I.A., Zhou K., & Dmitriev S. V. (2019). Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Comp. Mater. Sci., 163, 248–255. DOI: 10.1016/j.commatsci.2019.03.022
Bayazitov A. M., Dmitriev S. V., Zakharov P. V., Shepelev I. A., Fomin S. Y., & Korznikova E. A. (2019). Features of mass transfer by N-crowdions in fcc Ni3Al lattice. IOP Conf. Ser.: Mat. Sci., 672, 012033. DOI: 10.1088/1757-899X/672/1/012033
Bayazitov A. M., Korznikova E. A., Shepelev I. A., Chetverikov A. P., Khadiullin K. S., Sharapov E. A., Zakharov P. V., & Dmitriev S. V. (2018). Scenarios of mass transfer in fcc copper: the role of point defects. IOP Conf. Ser.: Mat. Sci., 447, 012040. DOI: 10.1088/1757-899X/447/1/012040
Chetverikov A. P., Shepelev I. A., Korznikova E. A., Kistanov A. A., Dmitriev S. V., & Velarde M. G. (2017). Breathing subsonic crowdion in Morse lattices. Computational Condensed Matter, 13, 59–64. DOI: 10.1016/j.cocom.2017.09.004
Dmitriev S. V., Medvedev N. N., Chetverikov A. P., Zhou K., & Velarde M. G. (2017). Highly Enhanced Transport by Supersonic N-Crowdions. Phys. Status Solidi – RRL, 11, 1700298. DOI: 10.1002/pssr.201700298
Fitzgerald S. P. (2018). Structure and dynamics of crowdion defects in bcc metals. J. Micromech. Mol. Phys., 03, 1840003.
Indenbom V. L. (1970). Interstitial (crowdion) mechanism of plastic information and failure. JETP Lett., 12, 369–371. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014934286&partnerID=40&md5=efcd2f6fc1b4395882a355c7933c71fe
Kiss A. M. et al. (2019). Laser‐induced keyhole defect dynamics during metal additive manufacturing. Adv. Eng. Mater., 21, 1900455. DOI: 10.1002/adem.201900455
Kononenko V. G., Bogdanov V. V., Turenko A. N., Volosyuk M. A., & Volosyuk A. V. (2016). The role of crowdion mass transfer in relaxation processes near hard concentrators. Probl. Atom. Sci. Tech., 104, 15–21. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988649375&partnerID=40&md5=3ad42a43ebe9afd199bd01baf1ede80b
Korznikova E. A., Mironov S. Y., Korznikov A. V., Zhilyaev A. P., & Langdon T. G. (2012). Microstructural evolution and electro-resistivity in HPT nickel. Mater. Sci. Eng. A., 556, 437–445. DOI: 10.1016/j.msea.2012.07.010
Korznikova E. A., Shepelev I. A., Chetverikov A. P., Dmitriev S. V., Fomin S. Y., & Zhou K. (2018). Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal. J. Exp. Theor. Phys., 127, 1009–1015. DOI: 10.1134/S1063776118120063
Korznikova E., Schafler E., Steiner G., & Zehetbauer M.J. (2006). Measurements of vacancy type defects in SPD deformed Ni. The Minerals, Metals & Materials Society (TMS), Edited by Y.T. Zhu et al., 97–102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646537186&partnerID=40&md5=bb12508a7630d7a7b3d52f357b7b3b6f
Korznikova E., Sunagatova I., Bayazitov A., Semenov A., & Dmitirev S. (2019). Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions. Letters on Materials, 9, 386–390. DOI: 10.22226/2410-3535-2019-4-386-390
Marjaneh A. M., Saadatmand D., Evazzade I., Babicheva R. I., Soboleva E. G., Srikanth N., Zhou K., Korznikova E. A., & Dmitriev S. V. (2018). Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact. Phys. Rev. E, 98, 023003. DOI: 10.1103/PhysRevE.98.023003
Matsukawa Y., & Zinkle S. J. (2007). One-dimensional fast migration of vacancy clusters in metals. Science, 318, 959–962. DOI: 10.1126/science.1148336
Mazilova T. I., Sadanov E. V., Voyevodin V. N., Ksenofontov V. A., & Mikhailovskij I. M. (2018). Impact-induced concerted mass transport on W surfaces by a voidion mechanism. Surf. Sci., 669, 10–15. DOI: 10.1016/j.susc.2017.11.002
Nordmark H., Holmestad R., Walmsley J.C., & Ulyashin A. (2009). Transmission electron microscopy study of hydrogen defect formation at extended defects in hydrogen plasma treated multicrystalline silicon. J. Appl. Phys., 105, 033506. DOI: 10.1063/1.3073893
Shepelev I. A., Chetverikov A. P., Dmitriev S. V., & Korznikova E. A. (2020 a). Shock waves in graphene and boron nitride. Comp. Mater. Sci., 177, 109549. DOI: 10.1016/j.commatsci.2020.109549
Shepelev I. A., Korznikova E. A., Bachurin D. V., Semenov A. S., Chetverikov A. P., & Dmitriev S. V. (2020 b). Supersonic crowdion clusters in 2D Morse lattice. Phys. Lett. A., 384, 126032. DOI: 10.1016/j.physleta.2019.126032
Terentyev D. A., Klaver T. P. C., Olsson P., Marinica M.-C., Willaime F., Domain C., & Malerba L. (2008). Self-trapped interstitial-type defects in iron. Phys. Rev. Lett., 100, 145503. DOI: 10.1103/PhysRevLett.100.145503
Terentyev D. A., Malerba L., & Hou M. (2007). Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B, 75, 104108. DOI: 10.1103/PhysRevB.75.104108
Turnage S. A. et al. (2018). Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions. Nat. Commun., 9, 2699. DOI: 10.1038/s41467-018-05027-5
Uche O. U., Perez D., Voter A. F., & Hamilton J. C. (2009). Rapid diffusion of magic-size islands by combined glide and vacancy mechanism. Phys. Rev. Lett., 103, 046101. DOI: 10.1103/PhysRevLett.103.046101
Wei Q., Schuster B. E., Mathaudhu S. N., Hartwig K. T., Kecskes L. J., Dowding R. J., & Ramesh K. T. (2008). Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures. Mater. Sci. Eng. A., 493, 58–64. DOI: 10.1016/j.msea.2007.05.126
Xu A., Armstrong D. E. J., Beck C., Moody M. P., Smith G. D. W., Bagot P. A. J., & Roberts S. G. (2017). Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study. Acta Mater., 124, 71–78. DOI: 10.1016/j.actamat.2016.10.050
Xu K., Weber M. H., Cao Y., Jiang W., Edwards D. J., Johnson B. R., & McCloy J. S. (2019). Ion irradiation induced changes in defects of iron thin films: Electron microscopy and positron annihilation spectroscopy. J Nuclear Mater., 526, 151774. DOI: 10.1016/j.jnucmat.2019.151774
Zhang Z., Yabuuchi K., & Kimura A. (2016). Defect distribution in ion-irradiated pure tungsten at different temperatures. J. Nuclear Mater., 480, 207–215. DOI: 10.1016/j.jnucmat.2016.08.029
Zhou W. H., Zhang C. G., Li Y. G., & Zeng Z. (2014). Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten. J. Nuclear Mater., 453, 202–209. DOI: 10.1016/j.jnucmat.2014.06.066