Dynamics of supersonic N-crowdions in fcc metals

Authors

  • Sergey V. Dmitriev Institute for Metals Superplasticity Problems of RAS, Russian Federation
  • Ayrat M. Bayazitov Ufa Federal Research Center of RAS, 450054, Ufa, Russian Federation
  • Elena A. Korznikova Ufa State Aviation Technical University, Ufa, Russian Federation
  • Dmitry V. Bachurin Institute for Applied Materials Physics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
  • Alexander V. Zinovev SCK • CEN, Institute for Nuclear Materials Science, Boeretang 200, Mol, 2400, Belgium

DOI:

https://doi.org/10.31181/rme200101054b

Keywords:

Reactor materials; Irradiation; Point defects; Supersonic crowdion; Molecular dynamics

Abstract

Crowdion is an interstitial atom located in a close-packed atomic row. It is an important point defect participating in relaxation processes occurring in metals and alloys under irradiation, effectively transferring mass and energy. In recent works of the authors, the concept of a supersonic crowdion was extended to a supersonic N-crowdion, in which not one, but N atoms move with high speed along a close-packed row. An experimental study of interstitial atoms moving along a crystal lattice at supersonic speeds encounters serious technical difficulties, and the most effective method for studying them is the molecular dynamics method. In this regard, a numerical study of dynamics of supersonic crowdions in metals is very important. In the present study, the molecular dynamics method was used to analyze the motion of supersonic 1- and 2-crowdions in fcc metals Ni, Al, Cu. The calculations were carried out using the LAMMPS software package and many-body potentials. The N-crowdion was excited by setting the same initial velocity to N neighboring atoms along a close-packed row. It was found that the mean free path of a 2-crowdion in pure metals can reach values that are 3 times greater than the mean free path of a 1-crowdion having the same initial energy. The results obtained indicate a higher efficiency of 2-crowdions in mass transfer in the studied metals. In further works, the possibility of launching supersonic 2-crowdions by bombarding the crystal surface with biatomic molecules will be analyzed.

References

Babicheva R. I., Evazzade I., Korznikova E. A., Shepelev I.A., Zhou K., & Dmitriev S. V. (2019). Low-energy channel for mass transfer in Pt crystal initiated by molecule impact. Comp. Mater. Sci., 163, 248–255. DOI: 10.1016/j.commatsci.2019.03.022

Bayazitov A. M., Dmitriev S. V., Zakharov P. V., Shepelev I. A., Fomin S. Y., & Korznikova E. A. (2019). Features of mass transfer by N-crowdions in fcc Ni3Al lattice. IOP Conf. Ser.: Mat. Sci., 672, 012033. DOI: 10.1088/1757-899X/672/1/012033

Bayazitov A. M., Korznikova E. A., Shepelev I. A., Chetverikov A. P., Khadiullin K. S., Sharapov E. A., Zakharov P. V., & Dmitriev S. V. (2018). Scenarios of mass transfer in fcc copper: the role of point defects. IOP Conf. Ser.: Mat. Sci., 447, 012040. DOI: 10.1088/1757-899X/447/1/012040

Chetverikov A. P., Shepelev I. A., Korznikova E. A., Kistanov A. A., Dmitriev S. V., & Velarde M. G. (2017). Breathing subsonic crowdion in Morse lattices. Computational Condensed Matter, 13, 59–64. DOI: 10.1016/j.cocom.2017.09.004

Dmitriev S. V., Medvedev N. N., Chetverikov A. P., Zhou K., & Velarde M. G. (2017). Highly Enhanced Transport by Supersonic N-Crowdions. Phys. Status Solidi – RRL, 11, 1700298. DOI: 10.1002/pssr.201700298

Fitzgerald S. P. (2018). Structure and dynamics of crowdion defects in bcc metals. J. Micromech. Mol. Phys., 03, 1840003.

Indenbom V. L. (1970). Interstitial (crowdion) mechanism of plastic information and failure. JETP Lett., 12, 369–371. https://www.scopus.com/inward/record.uri?eid=2-s2.0-0014934286&partnerID=40&md5=efcd2f6fc1b4395882a355c7933c71fe

Kiss A. M. et al. (2019). Laser‐induced keyhole defect dynamics during metal additive manufacturing. Adv. Eng. Mater., 21, 1900455. DOI: 10.1002/adem.201900455

Kononenko V. G., Bogdanov V. V., Turenko A. N., Volosyuk M. A., & Volosyuk A. V. (2016). The role of crowdion mass transfer in relaxation processes near hard concentrators. Probl. Atom. Sci. Tech., 104, 15–21. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84988649375&partnerID=40&md5=3ad42a43ebe9afd199bd01baf1ede80b

Korznikova E. A., Mironov S. Y., Korznikov A. V., Zhilyaev A. P., & Langdon T. G. (2012). Microstructural evolution and electro-resistivity in HPT nickel. Mater. Sci. Eng. A., 556, 437–445. DOI: 10.1016/j.msea.2012.07.010

Korznikova E. A., Shepelev I. A., Chetverikov A. P., Dmitriev S. V., Fomin S. Y., & Zhou K. (2018). Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal. J. Exp. Theor. Phys., 127, 1009–1015. DOI: 10.1134/S1063776118120063

Korznikova E., Schafler E., Steiner G., & Zehetbauer M.J. (2006). Measurements of vacancy type defects in SPD deformed Ni. The Minerals, Metals & Materials Society (TMS), Edited by Y.T. Zhu et al., 97–102. https://www.scopus.com/inward/record.uri?eid=2-s2.0-33646537186&partnerID=40&md5=bb12508a7630d7a7b3d52f357b7b3b6f

Korznikova E., Sunagatova I., Bayazitov A., Semenov A., & Dmitirev S. (2019). Effect of interatomic potentials on mass transfer by supersonic 2‑crowdions. Letters on Materials, 9, 386–390. DOI: 10.22226/2410-3535-2019-4-386-390

Marjaneh A. M., Saadatmand D., Evazzade I., Babicheva R. I., Soboleva E. G., Srikanth N., Zhou K., Korznikova E. A., & Dmitriev S. V. (2018). Mass transfer in the Frenkel-Kontorova chain initiated by molecule impact. Phys. Rev. E, 98, 023003. DOI: 10.1103/PhysRevE.98.023003

Matsukawa Y., & Zinkle S. J. (2007). One-dimensional fast migration of vacancy clusters in metals. Science, 318, 959–962. DOI: 10.1126/science.1148336

Mazilova T. I., Sadanov E. V., Voyevodin V. N., Ksenofontov V. A., & Mikhailovskij I. M. (2018). Impact-induced concerted mass transport on W surfaces by a voidion mechanism. Surf. Sci., 669, 10–15. DOI: 10.1016/j.susc.2017.11.002

Nordmark H., Holmestad R., Walmsley J.C., & Ulyashin A. (2009). Transmission electron microscopy study of hydrogen defect formation at extended defects in hydrogen plasma treated multicrystalline silicon. J. Appl. Phys., 105, 033506. DOI: 10.1063/1.3073893

Shepelev I. A., Chetverikov A. P., Dmitriev S. V., & Korznikova E. A. (2020 a). Shock waves in graphene and boron nitride. Comp. Mater. Sci., 177, 109549. DOI: 10.1016/j.commatsci.2020.109549

Shepelev I. A., Korznikova E. A., Bachurin D. V., Semenov A. S., Chetverikov A. P., & Dmitriev S. V. (2020 b). Supersonic crowdion clusters in 2D Morse lattice. Phys. Lett. A., 384, 126032. DOI: 10.1016/j.physleta.2019.126032

Terentyev D. A., Klaver T. P. C., Olsson P., Marinica M.-C., Willaime F., Domain C., & Malerba L. (2008). Self-trapped interstitial-type defects in iron. Phys. Rev. Lett., 100, 145503. DOI: 10.1103/PhysRevLett.100.145503

Terentyev D. A., Malerba L., & Hou M. (2007). Dimensionality of interstitial cluster motion in bcc-Fe. Phys. Rev. B, 75, 104108. DOI: 10.1103/PhysRevB.75.104108

Turnage S. A. et al. (2018). Anomalous mechanical behavior of nanocrystalline binary alloys under extreme conditions. Nat. Commun., 9, 2699. DOI: 10.1038/s41467-018-05027-5

Uche O. U., Perez D., Voter A. F., & Hamilton J. C. (2009). Rapid diffusion of magic-size islands by combined glide and vacancy mechanism. Phys. Rev. Lett., 103, 046101. DOI: 10.1103/PhysRevLett.103.046101

Wei Q., Schuster B. E., Mathaudhu S. N., Hartwig K. T., Kecskes L. J., Dowding R. J., & Ramesh K. T. (2008). Dynamic behaviors of body-centered cubic metals with ultrafine grained and nanocrystalline microstructures. Mater. Sci. Eng. A., 493, 58–64. DOI: 10.1016/j.msea.2007.05.126

Xu A., Armstrong D. E. J., Beck C., Moody M. P., Smith G. D. W., Bagot P. A. J., & Roberts S. G. (2017). Ion-irradiation induced clustering in W-Re-Ta, W-Re and W-Ta alloys: An atom probe tomography and nanoindentation study. Acta Mater., 124, 71–78. DOI: 10.1016/j.actamat.2016.10.050

Xu K., Weber M. H., Cao Y., Jiang W., Edwards D. J., Johnson B. R., & McCloy J. S. (2019). Ion irradiation induced changes in defects of iron thin films: Electron microscopy and positron annihilation spectroscopy. J Nuclear Mater., 526, 151774. DOI: 10.1016/j.jnucmat.2019.151774

Zhang Z., Yabuuchi K., & Kimura A. (2016). Defect distribution in ion-irradiated pure tungsten at different temperatures. J. Nuclear Mater., 480, 207–215. DOI: 10.1016/j.jnucmat.2016.08.029

Zhou W. H., Zhang C. G., Li Y. G., & Zeng Z. (2014). Transport, dissociation and rotation of small self-interstitial atom clusters in tungsten. J. Nuclear Mater., 453, 202–209. DOI: 10.1016/j.jnucmat.2014.06.066

Published

2020-07-25

How to Cite

Dynamics of supersonic N-crowdions in fcc metals. (2020). Reports in Mechanical Engineering, 1(1), 54-60. https://doi.org/10.31181/rme200101054b