Convergence analysis and validation of a discrete element model of the human lumbar spine

Authors

  • Galina Eremina Institute of Strength Physics and Materials Science SB RAS, Tomsk, Russia
  • Alexey Smolin Institute of Strength Physics and Materials Science SB RAS, Tomsk, Russia
  • Irina Martyshina Institute of Strength Physics and Materials Science SB RAS, Tomsk, Russia

DOI:

https://doi.org/10.31181/rme200103062e

Keywords:

Intervertebral disc, Vertebral body, Model verification and validation, Movable cellular automaton method

Abstract

Degenerative diseases of the spine can lead to or hasten the onset of additional spinal problems that significantly reduce human mobility. The spine consists of vertebral bodies and intervertebral discs. The most degraded are intervertebral discs. The vertebral body consists of a shell (cortical bone tissue) and an internal content (cancellous bone tissue). The intervertebral disc is a complex structural element of the spine, consisting of the nucleus pulposus, annulus fibrosus, and cartilaginous plates. To develop numerical models for the vertebral body and intervertebral disc, first, it is necessary to verify and validate the models for the constituent elements of the lumbar spine. This paper, for the first time, presents discrete elements-based numerical models for the constituent parts of the lumbar spine, and their verification and validation. The models are validated using uniaxial compression experiments available in the literature. The model predictions are in good qualitative and quantitative agreement with the data of those experiments. The loading rate sensitivity analysis revealed that fluid-saturated porous materials are highly sensitive to loading rate: a 1000-fold increase in rate leads to the increase in effective stiffness of 130 % for the intervertebral disc, and a 250-fold increase in rate leads to the increase in effective stiffness of 50 % for the vertebral body. The developed model components can be used to create an L4-L5 segment model, which, in the future, will allow investigating the mechanical behavior of the spine under different types of loading.

References

Amin, D. B., Sommerfeld, D., Lawless, I. M., Stanley, R. M., Ding, B., & Costi, J. .J. (2016). Effect of degeneration on the six degree of freedom mechanical properties of human lumbar spine segments. Journal of Orthopaedic Research, 34(8), 1399-409.

Balokhonov, R., Romanova, V., & Zemlianov, A. (2021). A mesoscopic analysis of a localized shear band propagation effect on the deformation and fracture of coated materials. Reports in Mechanical Engineering, 2(1), 6–22.

Basniev, K. S., Dmitriev, N. M., Chilingar, G. V., Gorfunkle, M., & Mohammed Nejad, A. G. (2012). Mechanics of fluid flow. Hoboken: John Wiley & Sons.

Bezci, S. E., Nandy, A., & O’Connell, G. D. (2015). Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness. Journal of Biomechanical Engineering, 137(10), 101007.

Chirkov, A., Eremina, G. M., Smolin, A. Yu., & Eremin, M. O. (2020). Numerical research of mechanical behavior of biological tissues under uniaxial compression/tension. AIP Conference Proceedings, 2310, 020063. https://doi.org/10.1063/5.0034381

Daniels, A. H., Paller, D. J., Koruprolu, S., Palumbo, M. A., & Crisco, J. J. (2013). Dynamic biomechanical examination of the lumbar spine with implanted total spinal segment replacement (TSSR) utilizing a pendulum testing system. PLoS One, 8(2), e57412.

Dall'Ara, E., Karl, C., Mazza, G., Franzoso, G., Vena, P., Pretterklieber, M., Pahr, D., & Zysset P. (2013). Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation. Journal of the Mechanical Behavior of Biomedical Materials. 25, 23-32.

Eremina, G. M., Smolin, A. Yu., & Shilko, E. V. (2019). Numerical modeling of the indentation of cancellous bone. AIP Conference Proceedings, 2167, 020090. https://doi.org/10.1063/1.5131957

Fan, R. X., Liu, J., Li, Y. L., Liu, J., & Gao, J. Z., (2018). Finite element investigation of the effects of the low-frequency vibration generated by vehicle driving on the human lumbar mechanical properties. BioMed Research International, 2018, 7962414. https://doi.org/10.1155/2018/7962414

Garo, A., Arnoux, P. J., & Aubin, C. E., (2009). Estimation of bone material properties using an inverse finite element method. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 121–122.

Garo, A., Arnoux, P. J., Wagnac, E., & Aubin, C. E. (2011). Calibration of the mechanical properties in a finite element model of a lumbar vertebra under dynamic compression up to failure. Medical & Biological Engineering & Computing, 49(12), 1371-1379.

Haj-Ali, R., Massarwa, E., Aboudi, J., Galbusera, F., Wolfram, U., Wilke. H.-J., (2017). A new multiscale micromechanical model of vertebral trabecular bones. Biomechanics and Modeling in Mechanobiology, 16, 933–946.

Jacobs, N. T., Cortes, D. H., Peloquin, J. M., Vresilovic, E. J., & Elliott, D. M. (2014). Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Journal of Biomechanics, 47(11), 2540–2546. https://doi.org/10.1016/j.jbiomech.2014.06.008

Jamison, D., Cannella, M., Pierce, E.C., & Marcolongo, M. S. (2013). A comparison of the human lumbar intervertebral disc mechanical response to normal and impact loading conditions. Journal of Biomechanical Engineering, 135(9), 091009.

Jones, A. C., Wilcox, R. K. (2008) Finite element analysis of the spine: Towards a framework of verification, validation and sensitivity analysis Medical Engineering & Physics, 30(10), 1287–1304

Kaya Ayvaz, D., Kervancıoğlu, P., Bahsi, A., & Bahsi, I. A. (2021). Radiological evaluation of lumbar spinous processes and interspinous spaces, including clinical implications. Cureus, 13(11), e19454

Konovalenko, Ig. S., Smolin, A. Yu., Korostelev, S. Yu., Psakh'e, S. G. (2009) Dependence of the macroscopic elastic properties of porous media on the parameters of a stochastic spatial pore distribution. Technical Physics, 54(5), 758–761.

Konz R. J., Goel V. K., Grobler L. J., Grosland, N. M., Spratt K. F., Scifert J. L., & Sairyo, K. (2001). The Pathomechanism of Spondylolytic Spondylolisthesis in Immature Primate Lumbar Spines. Spine, 26(4), E38–E49.

L4 vertebral body. (2021). https://sketchfab.com/3d-models/l4-vertebral-body-e8809a53a1b14e119b84885ed94b29d7 Accessed 15 August 2021.

Lao, L., Daubs, M. D., Scott, T. P., Lord, E. L, Cohen, J. R., Yin, R., Zhong, G., & Wang, J. C. (2015). Effect of disc degeneration on lumbar segmental mobility analyzed by kinetic magnetic resonance imaging. Spine, 40(5), 316–322.

Liu, J., Hao, L., Suyou, L., Shan, Z., Maiwulanjiang, M., Li S., Wang, C., Fan, S., & Zhao, F. (2016). Biomechanical properties of lumbar endplates and their correlation with MRI findings of lumbar degeneration. Journal of Biomechanics, 49(4), 586-593.

Mantell, M., Cyriac, M., Haines, C. M., Gudipally, M., & O'Brien, J. R. (2016). Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model. Journal of Neurosurgery: Spine, 24(1), 32-38.

Markolf, K. L., & Morris, J.M. (2001). The structural components of the intervertebral disc: a study of their contributions to the ability of the disc to withstand compressive forces. The Journal of Bone and Joint Surgery (American Volume), 56(4), 675–687.

Mengoni M. (2021). Biomechanical modelling of the facet joints: a review of methods and validation processes in finite element analysis. Biomechanics and Modeling in Mechanobiology, 20(2), 389-401.

Naoum, S., Vasiliadis, A. V., Koutserimpas, C., Mylonakis, N., Kotsapas, M., & Katakalos, K. (2021). Finite element method for the evaluation of the human spine: A Literature Overview. Journal of Functional Biomaterials, 2021, 12(3), 43.

Newell, N., Grigoriadis, G., Christou, A., Carpanen, D., & Masouros, S. D. (2017). Material properties of bovine intervertebral discs across strain rates. Journal of the Mechanical Behavior of Biomedical Materials, 65, 824–830. doi:10.1016/j.jmbbm.2016.10.01

Nikkhoo, M., Wang, J. L., Parnianpour, M., El-Rich, M., & Khalaf, K. (2018). Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading - Ex-vivo and In-Silico investigation. Journal of Biomechanics, 70, 26-32.

Ochia, R. S., Tencer, A. F., & Ching, R. P. (2003). Effect of loading rate on endplate and vertebral body strength in human lumbar vertebrae. Journal of Biomechanics, 36(12), 1875-1881.

Ogurkowska, M. B., & Błaszczyk A. (2020). Distribution of Young’s modulus at various sampling points in a human lumbar spine vertebral body. The Spine Journal, 20 (11), 1861-1875.

Psakhie, S. G., Dimaki, A. V., Shilko, E. V., & Astafurov, S. V. (2016). A coupled discrete element-finite difference approach for modeling mechanical response of fluid-saturated porous material. International Journal of Numerical Methods in Engineering, 106, 623–643. https://doi.org/10.1002/nme.5134

Psakhie, S. G., Horie, Y., Ostermeyer, G. P., Korostelev, S. Yu., Smolin, A. Yu., Shilko, E. V., Dmitriev, A. I., Blatnik, S., Špegel, M., & Zavšek, S. (2001) Movable cellular automata method for simulating materials with mesostructured. Theoretical and Applied Fracture Mechanics, 37(1-3), 311–334. https://doi.org/10.1016/S0167-8442(01)00079-9

Romanova, V. A., Balokhonov, R. R., Batukhtina, E. E., Emelianova, E. S., Sergeev, M. V. (2019). On the solution of quasi-static micro- and mesomechanical problems in a dynamic formulation. Physical Mesomechanics, 22(4), 296–306.

Romanova, V., Balokhonov, R., Emelianova, E., Zinovieva, O., Zinoviev, A. (2019a). Microstructure-based simulations of quasistatic deformation using an explicit dynamic approach. Facta Universitatis, Series: Mechanical Engineering, 17(2), 243–254.

Schmidt, H., Shirazi-Adl, A., Galbusera, F., & Wilke, H .J. (2010). Response analysis of the lumbar spine during regular daily activities--a finite element analysis. Journal of Biomechanics, 43(10), 1849–1856.

Shilko, E. V., Psakhie, S. G., Schmauder, S., Popov, V. L., Astafurov, S. V., & Smolin, A. Yu. (2015). Overcoming the limitations of distinct element method for multiscale modeling of materials with multimodal internal structure. Computational Materials Science, 102, 267–285. https://doi.org/10.1016/j.commatsci.2015.02.026

Shilko, E. V., Smolin, A. Yu., Dimaki, A. V., & Eremina, G. M. (2021). Particle-based approach for simulation of nonlinear material behavior in contact zone. In G.-P. Ostermeyer, V. L. Popov, E. V. Shilko, & O. Vasiljeva (Eds.), Multiscale biomechanics and tribology of inorganic and organic systems (pp. 67–89). Singapore: Springer.

Smolin, A. Yu., Eremina, G. M., Sergeyev, V. V., Shilko, E. V., & Psakhie, S. G. (2014). Three-dimensional movable cellular automata sim-ulation of elastoplastic deformation and fracture of coatings in contact interaction with a rigid indenter. Physical Mesomechanics, 17, 292–303. https://doi.org/10.1134/S1029959914040067

Stemper, B. D., Yoganandan, N., Baisden, J. L., Umale S., Shah, A. S., Shender, B. S., & Paskoff, G. R. (2015). Rate-dependent fracture characteristics of lumbar vertebral bodies. Journal of the Mechanical Behavior of Biomedical Materials, 41, 271-279.

Strange, D. G. T., Fisher, S. T., Boughton, P. C., Kishen, T. J., & Diwan, A. D. (2010). Restoration of compressive loading properties of lumbar discs with a nucleus implant—a finite element analysis study. The Spine Journal, 10(7), 602–609.

Xiang, X., Yamada, Y., Akiyama, Y., Tao, Z., & Kudo, N. (2021). Validation of lumbar compressive force simulation in forward flexion condition. Applied Sciences, 11, 726.

Xu, M., Yang, J., Lieberman I, H., & Haddas, R. (2016). Lumbar spine finite element model for healthy subjects: development and validation. Computer Methods in Biomechanics and Biomedical Engineering, 20(1), 1–15.

Wolfram, U., Wilke, H.J., Zysset, P.K., (2010). Valid micro finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions. Journal of Biomechanics, 43(9), 1731–1737.

Zahari, S. N., Latif, M., Rahim, N., Kadir, M., & Kamarul, T. (2017). The effects of physiological biomechanical loading on intradiscal pressure and annulus stress in lumbar spine: A finite element analysis. Journal of Healthcare Engineering, 2017, 9618940.

Published

2022-01-12

How to Cite

Convergence analysis and validation of a discrete element model of the human lumbar spine. (2022). Reports in Mechanical Engineering, 3(1), 62-70. https://doi.org/10.31181/rme200103062e