Comparative Study of Matrix Fiber Adhesion of Tannin/Vegetable Fiber, Tannin/Synthetic Fiber and Epoxy Composite Materials

Authors

  • Aslain Brisco Ngnassi Djami Department of Fundamental Sciences and Techniques of Engineer, Chemical Engineering and Mineral Industries School, University of Ngaoundere, Ngaoundere, Cameroon
  • Corneille Roosvelt Takoudjou Fossi Department of Mechanical Engineering, National School of Agro-Industrial Sciences, University of Ngaoundere, Ngaoundere, Cameroon

DOI:

https://doi.org/10.31181/rme244

Keywords:

Kenaf fibers, Resin, Alkalization, Pull-Out Tests, Fiber/matrix interface shear strength.

Abstract

This paper aims to compare the fiber-matrix adhesion of epoxy/kenaf and tannin/kenaf composite materials. Pull-out tests were performed to assess the shear strength at the fiber-matrix interface. The observations are correlated with statistical analyses. The results showed that the shear strength at the fiber-matrix interface was significantly higher for kenaf fibers treated with 0.5 M sodium hydroxide (NaOH) and coupled with epoxide (0.1390 N/mm²) compared to the same fibers treated and coupled with a tannin-based vegetable matrix (0.0903 N/mm²). However, this treatment caused a slight reduction in the tensile strength of the fibers. The surface of the treated kenaf fibers is very clean; the disappearance of impurities such as wax and oil led to improved molecular cohesion on the surface of the treated kenaf fibers, suggesting enhanced fiber-matrix adhesion. In fact, the absorption and dispersion energies on the fiber surface increased with the sodium hydroxide treatment and alkalization.

References

Adegoke, K. A., Adesina, O. O., Okon-Akan, O. A., Adegoke, O. R., Olabintan, A. B., Ajala, O. A., Olagoke, H., Maxakato, N. W., & Bello, O. S. (2022). Sawdust-biomass based materials for sequestration of organic and inorganic pollutants and potential for engineering applications. Current Research in Green and Sustainable Chemistry, 5, 100274. https://doi.org/10.1016/j.crgsc.2022.100274

Ahmed, J. S., Satyasree, K., Kumar, R. R., Meenakshisundaram, O., & Shanmugavel, S. (2023). A comprehensive review on recent developments of natural fiber composites synthesis, processing, properties, and characterization. Engineering Research Express, 5(3), 032001. https://doi.org/10.1088/2631-8695/aceb2d

Alkhoori, M. A., Kong, A. S.-Y., Aljaafari, M. N., Abushelaibi, A., Erin Lim, S.-H., Cheng, W.-H., Chong, C.-M., & Lai, K.-S. (2022). Biochemical composition and biological activities of date palm (Phoenix dactylifera L.) seeds: a review. Biomolecules, 12(11), 1626. https://doi.org/10.3390/biom12111626

Alp, D., & Kuleaşan, H. (2019). Adhesion mechanisms of lactic acid bacteria: conventional and novel approaches for testing. World Journal of Microbiology and Biotechnology, 35(10), 156. https://doi.org/10.1007/s11274-019-2730-x

Aspevik, T., Oterhals, Å., Rønning, S. B., Altintzoglou, T., Wubshet, S. G., Gildberg, A., Afseth, N. K., Whitaker, R. D., & Lindberg, D. (2018). Valorization of proteins from co-and by-products from the fish and meat industry. Chemistry and chemical technologies in waste valorization, 123-150. https://doi.org/10.1007/s41061-017-0143-6

Ayari‐Guentri, S., Saad, S., Ait Kettout, T., Gaceb‐Terrak, R., & Djemouai, N. (2024). Seeds of Hyoscyamus muticus L. subsp. falezlez: Morpho‐Anatomical Features, Phytochemical Investigation and Evidence for Antioxidant Activities. Chemistry & Biodiversity, e202401026. https://doi.org/10.1002/cbdv.202401026

Azuwa, S. B., & Yahaya, F. B. M. (2024). Experimental investigation and finite element analysis of reinforced concrete beams strengthened by fibre reinforced polymer composite materials: A review. Alexandria Engineering Journal, 99, 137-167. https://doi.org/10.1016/j.aej.2024.05.017

Bader, T. K., & Ormarsson, S. (2023). Modeling the mechanical behavior of wood materials and timber structures. In Springer Handbook of Wood Science and Technology (pp. 507-568). Springer. https://doi.org/10.1007/978-3-030-81315-4_10

Baldan, A. (2012). Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives, 38, 95-116. https://doi.org/10.1016/j.ijadhadh.2012.04.007

Baranov, A., Sommerhoff, F., Curnow, O. J., & Staiger, M. P. (2023). Prospects for manufacturing of complex 3D-shaped all-cellulose composites. Composites Part A: Applied Science and Manufacturing, 173, 107627. https://doi.org/10.1016/j.compositesa.2023.107627

Bemerw, B., Gibril, M., Wang, S., & Kong, F. (2021). Synthesis of bio phenolic polymer and its properties. Phenolic Polymers Based Composite Materials, 13-37. https://doi.org/10.1007/978-981-15-8932-4_2

Bera, K. K., & Banerjee, A. (2023). A consistent dynamic stiffness matrix for flutter analysis of bridge decks. Computers & Structures, 286, 107107. https://doi.org/10.1016/j.compstruc.2023.107107

binti Hamdi, Z., & Ahmad, A. G. (2023). Sick building syndrome: The effects of animal and plant-based adhesive in wood furniture. ARTEKS: Jurnal Teknik Arsitektur, 8(1), 9-20. https://doi.org/0000-0001-7969-7928

Biswas, P., Suresh, M. B., Jana, D. C., Saha, B. P., & Johnson, R. (2024). Processing of lithium aluminium silicate glass-ceramics and investigations of fracture behaviour and its correlation with the microstructural features. Ceramics International, 50(3), 4708-4714. https://doi.org/10.1016/j.ceramint.2023.11.215

Blanco, I., & Siracusa, V. (2021). The use of thermal techniques in the characterization of bio-sourced polymers. Materials, 14(7), 1686. https://doi.org/10.3390/ma14071686

Borrero-López, A. M., Nicolas, V., Marie, Z., Celzard, A., & Fierro, V. (2022). A review of rigid polymeric cellular foams and their greener tannin-based alternatives. Polymers, 14(19), 3974. https://doi.org/10.3390/polym14193974

Borri, A., Corradi, M., & Speranzini, E. (2013). Reinforcement of wood with natural fibers. Composites Part B: Engineering, 53, 1-8. https://doi.org/10.1016/j.compositesb.2013.04.039

Buscaglia, G. C., & Ausas, R. F. (2011). Variational formulations for surface tension, capillarity and wetting. Computer Methods in Applied Mechanics and Engineering, 200(45-46), 3011-3025. https://doi.org/10.1016/j.cma.2011.06.002

Campàs, O., Noordstra, I., & Yap, A. S. (2024). Adherens junctions as molecular regulators of emergent tissue mechanics. Nature Reviews Molecular Cell Biology, 25(4), 252-269. https://doi.org/10.1038/s41580-023-00688-7

Chang, B. P., Rodriguez-Uribe, A., Mohanty, A. K., & Misra, M. (2021). A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity. Renewable and Sustainable Energy Reviews, 152, 111666. https://doi.org/10.1016/j.rser.2021.111666

Cheynier, V. (2012). Phenolic compounds: from plants to foods. Phytochemistry reviews, 11(2), 153-177. https://doi.org/10.1007/s11101-012-9242-8

Cohen-Tannoudji, L., Bertrand, E., Baudry, J., Robic, C., Goubault, C., Pellissier, M., Johner, A., Thalmann, F., Lee, N.-K., & Marques, C. M. (2008). Measuring the kinetics of biomolecular recognition with magnetic colloids. Physical Review Letters, 100(10), 108301. https://doi.org/10.1103/PhysRevLett.100.108301

Cook, D. F., & Chiu, C.-C. (1997). Predicting the internal bond strength of particleboard, utilizing a radial basis function neural network. Engineering Applications of Artificial Intelligence, 10(2), 171-177. https://doi.org/10.1016/S0952-1976(96)00068-1

Corinaldesi, V., & Nardinocchi, A. (2016). Mechanical characterization of Engineered Cement-based Composites prepared with hybrid fibres and expansive agent. Composites Part B: Engineering, 98, 389-396. https://doi.org/10.1016/j.compositesb.2016.05.051

Cui, C., & Liu, W. (2021). Recent advances in wet adhesives: Adhesion mechanism, design principle and applications. Progress in Polymer Science, 116, 101388. https://doi.org/10.1016/j.progpolymsci.2021.101388

Della Volpe, C., & Siboni, S. (2022). From van der Waals equation to acid-base theory of surfaces: a chemical-mathematical journey. Reviews of Adhesion and Adhesives(1), 47-97. https://doi.org/10.47750/RAA/10.1.02

Dietrich, H., & Pour Nikfardjam, M. S. (2017). Influence of phenolic compounds and tannins on wine-related microorganisms. Biology of Microorganisms on Grapes, in Must and in Wine, 421-454. https://doi.org/10.1007/978-3-319-60021-5_18

Dijkstra, A. J. (2013). Production of Vegetable Oils from Fruits and Germs. Edible Oil Processing from a Patent Perspective, 59-78. https://doi.org/10.1007/978-1-4614-3351-4_3

Ferrier, E., Michel, L., Zuber, B., & Chanvillard, G. (2015). Mechanical behaviour of ultra-high-performance short-fibre-reinforced concrete beams with internal fibre reinforced polymer bars. Composites Part B: Engineering, 68, 246-258. https://doi.org/10.1016/j.compositesb.2014.08.001

Flores, D., Dagenais, C., & Blanchet, P. (2023). Characterizing the Performance of Adhesive Used in Glued-In Rod Timber Connections at Elevated Temperatures. Journal of Performance of Constructed Facilities, 37(4), 04023035. https://doi.org/10.1061/JPCFEV.CFENG-4416

Forzato, C., Vida, V., & Berti, F. (2020). Biosensors and sensing systems for rapid analysis of phenolic compounds from plants: A comprehensive review. Biosensors, 10(9), 105. https://doi.org/10.3390/bios10090105

Fowkes, F. M. (1987). Role of acid-base interfacial bonding in adhesion. Journal of Adhesion Science and Technology, 1(1), 7-27. https://doi.org/10.1163/156856187X00049

Gadrat, M., Emo, C., Lavergne, J., Teissèdre, P.-L., & Chira, K. (2022). Impact of Barrel Toasting on Ellagitannin Composition of Aged Cognac Eaux-de-Vie. Molecules, 27(8), 2531. https://doi.org/10.3390/molecules27082531

Geoghegan, M., & Krausch, G. (2003). Wetting at polymer surfaces and interfaces. Progress in Polymer Science, 28(2), 261-302. https://doi.org/10.1016/S0079-6700(02)00080-1

Ghebrid, N., Dadache, D., Barka, B., Guellal, M., Rouabah, F., & Fois, M. (2024). Effect of Heat Treatment and Pigment Fraction on the Thermal Conductivity and Dynamic Behavior of Poly (Methyl Methacrylate) Pigmented with Titanium Dioxide. Russian Journal of Nondestructive Testing, 60(3), 345-356. https://doi.org/10.1134/S1061830923601423

Giubertoni, G., Sofronov, O. O., & Bakker, H. J. (2020). Effect of intramolecular hydrogen-bond formation on the molecular conformation of amino acids. Communications Chemistry, 3(1), 84. https://doi.org/10.1038/s42004-020-0329-7

Grabowski, S. J. (2006). Theoretical studies of strong hydrogen bonds. Annual Reports Section" C"(Physical Chemistry), 102, 131-165. https://doi.org/10.1039/B417200K

Grabowski, S. J. (2020). Hydrogen bond and other lewis acid–lewis base interactions as preliminary stages of chemical reactions. Molecules, 25(20), 4668. https://doi.org/10.3390/molecules25204668

Guan, W., Luo, B., Han, W., Suo, H., Niu, Y., Wei, Z., & Cheng, H. (2024). Deterioration of carbon fiber/matrix interface in humid environments and influence of silicon coupling agent modification: An atomistic investigation. Composite Structures, 344, 118330. https://doi.org/10.1016/j.compstruct.2024.118330

Herzi, N., Bouajila, J., Camy, S., Romdhane, M., & Condoret, J.-S. (2013). Comparison of different methods for extraction from Tetraclinis articulata: Yield, chemical composition and antioxidant activity. Food chemistry, 141(4), 3537-3545. https://doi.org/10.1016/j.foodchem.2013.06.065

Hounkpatin, H. W., Donnou, H. E., Chegnimonhan, K. V., Hounguè, G. H., & Kounouhewa, B. B. (2023). Thermal characterisation of insulation panels based on vegetable typha domengensis and starch. Scientific African, 21, e01786. https://doi.org/10.1016/j.sciaf.2023.e01786

Huang, S., Fu, Q., Yan, L., & Kasal, B. (2021). Characterization of interfacial properties between fibre and polymer matrix in composite materials–A critical review. journal of materials research and technology, 13, 1441-1484. https://doi.org/10.1016/j.jmrt.2021.05.076

Huang, Y., Karami, B., Shahsavari, D., & Tounsi, A. (2021). Static stability analysis of carbon nanotube reinforced polymeric composite doubly curved micro-shell panels. Archives of Civil and Mechanical Engineering, 21(4), 139. https://doi.org/10.1007/s43452-021-00291-7

Jawaid, M., Khalil, H. A., Bakar, A. A., & Khanam, P. N. (2011). Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Materials & Design, 32(2), 1014-1019. https://doi.org/10.1016/j.matdes.2010.07.033

Joly, N., Granet, R., & Krausz, P. (2005). Olefin metathesis applied to cellulose derivatives—Synthesis, analysis, and properties of new crosslinked cellulose plastic films. Journal of Polymer Science Part A: Polymer Chemistry, 43(2), 407-418. https://doi.org/10.1002/pola.20519

Joshi, A. S., Singh, P., & Mijakovic, I. (2020). Interactions of gold and silver nanoparticles with bacterial biofilms: Molecular interactions behind inhibition and resistance. International journal of molecular sciences, 21(20), 7658. https://doi.org/10.3390/ijms21207658

Karger-Kocsis, J., Mahmood, H., & Pegoretti, A. (2015). Recent advances in fiber/matrix interphase engineering for polymer composites. Progress in Materials Science, 73, 1-43. https://doi.org/10.1016/j.pmatsci.2015.02.003

Karioti, A., Carta, F., & Supuran, C. T. (2016). Phenols and polyphenols as carbonic anhydrase inhibitors. Molecules, 21(12), 1649. https://doi.org/10.3390/molecules21121649

Kassoul, A., Zerrouk, A., & Henni, I. D. (2018). Rehabilitation of an Edified Building in a Seismic Zone in Algeria According to the Eurocode 8-3. https://doi.org/10.13189/cea.2018.060103

Khorasani, M., Elahi, H., Eugeni, M., Lampani, L., & Civalek, O. (2022). Vibration of FG porous three-layered beams equipped by agglomerated nanocomposite patches resting on Vlasov's foundation. Transport in Porous Media, 142(1), 157-186. https://doi.org/10.1007/s11242-021-01658-3

Kinloch, A. J. (2012). Adhesion and adhesives: science and technology. Springer Science & Business Media. https://doi.org/10.1007/978-94-015-7764-9

Konfo, T. R. C., Djouhou, F. M. C., Koudoro, Y. A., Dahouenon-Ahoussi, E., Avlessi, F., Sohounhloue, C. K. D., & Simal-Gandara, J. (2023). Essential oils as natural antioxidants for the control of food preservation. Food Chemistry Advances, 2, 100312. https://doi.org/10.1016/j.focha.2023.100312

Koopmann, A.-K., Schuster, C., Torres-Rodríguez, J., Kain, S., Pertl-Obermeyer, H., Petutschnigg, A., & Hüsing, N. (2020). Tannin-based hybrid materials and their applications: A review. Molecules, 25(21), 4910. https://doi.org/10.3390/molecules25214910

Krupa, I., Boudenne, A., & Ibos, L. (2007). Thermophysical properties of polyethylene filled with metal coated polyamide particles. European Polymer Journal, 43(6), 2443-2452. https://doi.org/10.1016/j.eurpolymj.2007.03.032

Lazzari, G., Münger, A., Eggerschwiler, L., Borda-Molina, D., Seifert, J., Camarinha-Silva, A., Schrade, S., Zähner, M., Zeyer, K., & Kreuzer, M. (2023). Effects of Acacia mearnsii added to silages differing in nutrient composition and condensed tannins on ruminal and manure-derived methane emissions of dairy cows. Journal of Dairy Science, 106(10), 6816-6833. https://doi.org/10.3168/jds.2022-22901

Le, D. T. L., Tran, T.-L., Duviau, M.-P., Meyrand, M., Guerardel, Y., Castelain, M., Loubiere, P., Chapot-Chartier, M.-P., Dague, E., & Mercier-Bonin, M. (2013). Unraveling the role of surface mucus-binding protein and pili in muco-adhesion of Lactococcus lactis. PLoS One, 8(11), e79850. https://doi.org/10.1371/journal.pone.0079850

Li, M., Wang, X., Meng, J., Zuo, C., Wu, B., Li, C., Sun, W., & Mai, L. (2024). Comprehensive understandings of hydrogen bond chemistry in aqueous batteries. Advanced Materials, 36(3), 2308628. https://doi.org/10.1002/adma.202308628

Liu, Y., Liu, W., Gao, W., Zhang, L., & Zhang, E. (2019). Mechanical responses of a composite sandwich structure with Nomex honeycomb core. Journal of Reinforced Plastics and Composites, 38(13), 601-615. https://doi.org/10.1177/0731684419836492

Mukherjee, A., & Banerjee, B. (2024). Elastic-gap free strain gradient crystal plasticity model that effectively account for plastic slip gradient and grain boundary dissipation. arXiv preprint arXiv:2405.13384. https://doi.org/10.48550/arXiv.2405.13384

Mulenga, T. K., Ude, A. U., & Vivekanandhan, C. (2021). Techniques for modelling and optimizing the mechanical properties of natural fiber composites: A review. Fibers, 9(1), 6. https://doi.org/10.3390/fib9010006

Nagy, P. I. (2014). Competing intramolecular vs. intermolecular hydrogen bonds in solution. International journal of molecular sciences, 15(11), 19562-19633. https://doi.org/10.3390/ijms151119562

Nair, V., Sharma, I., & Shankar, V. (2023). Equilibrium shapes of liquid drops on pre-stretched nonlinear elastic membranes. Journal of Fluid Mechanics, 961, A28. https://doi.org/10.1017/jfm.2023.223

Nechifor, M., Tanasă, F., Teacă, C.-A., & Şulea, D. (2022). Maleated coupling agents for the surface treatment of natural fibers. Surface treatment methods of natural fibres and their effects on biocomposites, 95-123. https://doi.org/10.1016/B978-0-12-821863-1.00005-3

Netsch, N., Simons, M., Feil, A., Leibold, H., Richter, F., Slama, J., Yogish, S. P., Greiff, K., & Stapf, D. (2022). Recycling of polystyrene-based external thermal insulation composite systems–Application of combined mechanical and chemical recycling. Waste management, 150, 141-150. https://doi.org/10.1016/j.wasman.2022.07.001

Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., & Vo, T. P. (2022). A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Composite Structures, 282, 115095. https://doi.org/10.1016/j.compstruct.2021.115095

Ntenga, R., Pagore, F. D., Pizzi, A., Mfoumou, E., & Ohandja, L.-M. A. (2017). Characterization of tannin-based resins from the barks of Ficus platyphylla and of Vitellaria paradoxa: composites’ performances and applications. Materials Sciences and Applications, 8(12), 899. https://doi.org/10.4236/msa.2017.812066

Nunes, I., Correia, A. C., Jordão, A. M., & M. Ricardo-da-Silva, J. (2020). Use of oak and cherry wood chips during alcoholic fermentation and the maturation process of rosé wines: Impact on phenolic composition and sensory profile. Molecules, 25(5), 1236. https://doi.org/10.3390/molecules25051236

Ökmen, G., Giannetto, D., Fazio, F., & Arslan, K. (2023). Investigation of pomegranate (Punica granatum L.) flowers’ antioxidant properties and antibacterial activities against different staphylococcus species associated with bovine mastitis. Veterinary sciences, 10(6), 394. https://doi.org/10.3390/vetsci10060394

Okwara, N. A., Igwe, C. U., Nzebude, P. C., Ujowundu, F. N., & Okwara, J. E. (2024). Antimicrobial effect of aqueous extracts of Garcinia kola, Cymbopogan citratus and Bryophyllium pinnatum against sputum bacterial isolates from human subjects. GSC Biological and Pharmaceutical Sciences, 28(1), 083-100. https://doi.org/10.30574/gscbps.2024.28.1.0252

Oliver-Ortega, H., Julian, F., Espinach, F. X., Tarrés, Q., Delgado-Aguilar, M., & Mutjé, P. (2021). Biobased polyamide reinforced with natural fiber composites. Fiber Reinforced Composites, 141-165. https://doi.org/10.1016/B978-0-12-821090-1.00008-9

Pandit, P., Nadathur, G. T., Maiti, S., & Regubalan, B. (2018). Functionality and properties of bio-based materials. Bio-based materials for food packaging: Green and sustainable advanced packaging materials, 81-103. https://doi.org/10.1007/978-981-13-1909-9_4

Parveez, B., Kittur, M., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. (2022). Scientific advancements in composite materials for aircraft applications: a review. Polymers, 14(22), 5007. https://doi.org/10.3390/polym14225007

Patra, A. K., & Saxena, J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. Journal of the Science of Food and Agriculture, 91(1), 24-37. https://doi.org/10.1002/jsfa.4152

Paul, S., Sen, B., Das, S., Abbas, S. J., Pradhan, S. N., Sen, K., & Ali, S. I. (2023). Incarnation of bioplastics: recuperation of plastic pollution. International Journal of Environmental Analytical Chemistry, 103(19), 8217-8240. https://doi.org/10.1080/03067319.2021.1983552

Periasamy, K., Kandare, E., Das, R., Darouie, M., & Khatibi, A. A. (2023). Interfacial engineering methods in thermoplastic composites: an overview. Polymers, 15(2), 415. https://doi.org/10.3390/polym15020415

Plawsky, J. L. (2020). Transport phenomena fundamentals. CRC press. https://doi.org/10.1201/9781315113388

Pour, M. A., Sardari, S., Eslamifar, A., Rezvani, M., Azhar, A., & Nazari, M. (2016). Evaluating the anticoagulant effect of medicinal plants in vitro by cheminformatics methods. Journal of herbal medicine, 6(3), 128-136. https://doi.org/10.1016/j.hermed.2016.05.002

Prüss, J., Simonett, G., & Zacher, R. (2013). Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension. Archive for Rational Mechanics and Analysis, 207(2), 611-667. https://doi.org/10.1007/s00205-012-0571-y

Qasim, M., Lee, C., & Zhang, Y. (2022). An experimental study on interfacial bond strength between hybrid engineered cementitious composite and concrete. Construction and Building Materials, 356, 129299. https://doi.org/10.1016/j.conbuildmat.2022.129299

Raabe, J., Silva, D. W., Del Menezzi, C. H. S., & Tonoli, G. H. D. (2022). Impact of nanosilica deposited on cellulose pulp fibers surface on hydration and fiber-cement compressive strength. Construction and Building Materials, 326, 126847. https://doi.org/10.1016/j.conbuildmat.2022.126847

Romani, A., Pinelli, P., Galardi, C., Mulinacci, N., & Tattini, M. (2002). Identification and quantification of galloyl derivatives, flavonoid glycosides and anthocyanins in leaves of Pistacia lentiscus L. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques, 13(2), 79-86. https://doi.org/10.1002/pca.627

Romanus, K., Baeten, J., Poblome, J., Accardo, S., Degryse, P., Jacobs, P., De Vos, D., & Waelkens, M. (2009). Wine and olive oil permeation in pitched and non-pitched ceramics: relation with results from archaeological amphorae from Sagalassos, Turkey. Journal of Archaeological Science, 36(3), 900-909. https://doi.org/10.1016/j.jas.2008.11.024

Rowell, R. M. (2021). Understanding wood surface chemistry and approaches to modification: A review. Polymers, 13(15), 2558. https://doi.org/10.3390/polym13152558

Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building materials. https://doi.org/10.1016/j.conbuildmat.2014.11.043

Sadeghi, B., Cavaliere, P., Pruncu, C. I., Balog, M., Marques de Castro, M., & Chahal, R. (2024). Architectural design of advanced aluminum matrix composites: A review of recent developments. Critical Reviews in Solid State and Materials Sciences, 49(1), 1-71. https://doi.org/10.1080/10408436.2022.2078277

Salman, S., Pétrissans, A., Thévenon, M. F., Dumarçay, S., Perrin, D., Pollier, B., & Gerardin, P. (2014). Development of new wood treatments combining boron impregnation and thermo modification: effect of additives on boron leachability. European Journal of Wood and Wood Products, 72, 355-365. https://doi.org/10.1007/s00107-014-0787-7

Saxena, M. K., Singh, N., Kumar, S., Mp, D., & Datta, S. (2021). Potent Pharmaceutical Products from Aquatic Plants–review. Asian J Pharm Clin Res, 14(1), 48-63. https://doi.org/10.22159/ajpcr.2021.v14i1.39992

Sayouba, S., Kayaba, H., Téré, D., Souleymane, S., Oumar, S., Jean, K., & Antoine, B. (2023). Formulation and thermomechanical characterization of earth-based biosourced composites: cases of clay-Hibiscus cannabinus L. fiber, clay-sawdust and clay-Oryza sativa Husk. Asian Journal of Physical and Chemical Sciences, 11(3), 30-44. https://doi.org/10.9734/ajopacs/2023/v11i3204

Sellam, S.-H., Moummi, A., Mehdid, C.-E., Rouag, A., Benmachiche, A.-H., Melhegueg, M.-A., & Benchabane, A. (2022). Experimental performance evaluation of date palm fibers for a direct evaporative cooler operating in hot and arid climate. Case Studies in Thermal Engineering, 35, 102119. https://doi.org/10.1016/j.csite.2022.102119

Selvin, T. P., Kuruvilla, J., & Sabu, T. (2004). Mechanical properties of titanium dioxide-filled polystyrene microcomposites. Materials Letters, 58(3-4), 281-289. https://doi.org/10.1016/S0167-577X(03)00470-1

Shen, Q., Nylund, J., & Rosenholm, J. B. (1998). Estimation of the surface energy and acid-base properties of wood by means of wetting method. https://doi.org/10.1515/hfsg.1998.52.5.521

Shresta, S., Bhandari, S., Aryal, B., Marasini, B. P., Khanal, S., Poudel, P., Rayamajhee, B., Adhikari, B., Bhattarai, B. R., & Parajuli, N. (2021). Evaluation of phytochemical, antioxidant and antibacterial activities of selected medicinal plants. Nepal Journal of Biotechnology, 9(1), 50-62. https://doi.org/10.3126/njb.v9i1.38667

Sid, S., Mor, R. S., Kishore, A., & Sharanagat, V. S. (2021). Bio-sourced polymers as alternatives to conventional food packaging materials: A review. Trends in Food Science & Technology, 115, 87-104. https://doi.org/10.1016/j.tifs.2021.06.026

Tan, D., Zhang, F., & Zhou, X. (2022). Surface tension force on a partially submerged horizontal concave cylinder. Journal of Fluid Mechanics, 950, A15. https://doi.org/10.1017/jfm.2022.813

Vinod, A., Barak, Y., Schmid, S. Y., Gulec, S., Bhimavarapu, Y., Jena, A., & Tadmor, R. (2024). Measuring surface energy of solid surfaces using centrifugal adhesion balance. Physical Review E, 110(1). https://doi.org/10.1103/PhysRevE.110.014801

Wang, B., Zhong, S., Lee, T.-L., Fancey, K. S., & Mi, J. (2020). Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Advances in mechanical engineering, 12(4), 1687814020913761. https://doi.org/10.1177/1687814020913761

Wasieleski, D., Waddock, S., Fort, T., & Guimarães-Costa, N. (2021). Natural sciences, management theory, and system transformation for sustainability. Business & Society, 60(1), 7-25. https://doi.org/10.1177/0007650319898384

Weyhrich, C. W., Petrova, S. P., Edgar, K. J., & Long, T. E. (2023). Renewed interest in biopolymer composites: incorporation of renewable, plant-sourced fibers. Green Chemistry, 25(1), 106-129. https://doi.org/10.1039/D2GC03384D

Xie, M., Zhan, L., Ma, B., & Hui, S. (2024). Classification of fiber metal laminates (FMLs), adhesion theories and methods for improving interfacial adhesion: A review. Thin-Walled Structures, 111744. https://doi.org/10.1016/j.tws.2024.111744

Xiong, X., Hua, L., Miao, M., Shen, S. Z., Li, X., Wan, X., & Guo, W. (2018). Multi-scale constitutive modeling of natural fiber fabric reinforced composites. Composites Part A: Applied Science and Manufacturing, 115, 383-396. https://doi.org/10.1016/j.compositesa.2018.10.016

Yadav, A., Gerislioglu, B., Ahmadivand, A., Kaushik, A., Cheng, G. J., Ouyang, Z., Wang, Q., Yadav, V. S., Mishra, Y. K., & Wu, Y. (2021). Controlled self-assembly of plasmon-based photonic nanocrystals for high performance photonic technologies. Nano Today, 37, 101072. https://doi.org/10.1016/j.nantod.2020.101072

Zaoui, F. Z., Ouinas, D., Achour, B., Touahmia, M., Boukendakdji, M., Latifee, E. R., Al-Naghi, A. A. A., & Viña Olay, J. A. (2022). Mathematical approach for mechanical behaviour analysis of FGM plates on elastic foundation. Mathematics, 10(24), 4764. https://doi.org/10.3390/math10244764

Zhou, A., & Lu, T. (2009). Elasto-plastic constitutive model of soil-structure interface in consideration of strain softening and dilation. Acta Mechanica Solida Sinica, 22(2), 171-179. https://doi.org/10.1016/S0894-9166(09)60102-6

Zou, Y., Gao, Y., Chen, A., Wu, S., Li, Y., Xu, H., Wang, H., Yang, Y., & Amirkhanian, S. (2024). Adhesion failure mechanism of asphalt-aggregate interface under an extreme saline environment: A molecular dynamics study. Applied Surface Science, 645, 158851. https://doi.org/10.1016/j.apsusc.2023.158851

Downloads

Published

2024-09-09

How to Cite

Comparative Study of Matrix Fiber Adhesion of Tannin/Vegetable Fiber, Tannin/Synthetic Fiber and Epoxy Composite Materials. (2024). Reports in Mechanical Engineering, 5(1), 13-32. https://doi.org/10.31181/rme244