Finite element thermal analysis of a moving porous fin with temperature-variant thermal conductivity and internal heat generation
DOI:
https://doi.org/10.31181/rme200101110sKeywords:
Thermal analysis; Moving porous Fin; Finite element method; Internal heat generation.Abstract
This paper focuses on finite element analysis of the thermal behaviour of a moving porous fin with temperature-variant thermal conductivity and internal heat generation. The numerical solutions are used to investigate the effects of Peclet number, Hartmann number, porous and convective parameters on the temperature distribution, heat transfer and efficiency of the moving fin. The results show that when the convective and porous parameters increase, the adimensional fin temperature decreases. However, the value of the fin temperature is amplified as the value Peclet number is enlarged. Also, an increase in the thermal conductivity and the internal heat generation cause the fin temperature to fall and the rate of heat transfer from the fin to decrease. Therefore, the operational parameters of the fin must be carefully selected to avoid thermal instability in the fin.
References
Ali, H. M., Ashraf, M. J., Giovannelli, A., Irfan, M., Irshad, T. B., Hamid, H. M. (2018). Thermal management of electronics: An experimental analysis of triangular, rectangular and circular pin-fin heat sinks for various PCMs. International Journal of Heat and Mass Transfer, 123, 272-284.
Aziz, A., & Khani, F. (2011). Convection-radiation from a continuously moving fin of variable thermal conductivity, J. of Franklin Institute, 348, 640-651.
Aziz, A., & Khani, F. (2011). Convection-radiation from a continuous moving fin of variable thermal conductivity. J Franklin Inst, 348, 640–651.
Aziz, A., & Lopez, R. J. (2011). Convection -radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing, I. J. of Thermal Sciences, 50, 1523-1531.
Aziz, A., & Lopez, R. J. (2011). Convection-radiation from a continuously moving, variable thermal conductivity sheet or rod undergoing thermal processing. Int. J Therm Sci, 50, 1523-1531.
Aziz, A., & Torabi, M. (2012). Covective-radiative fins with simultaneous variation of thermal conductivity, heat transfer coef ficient and surface emissivity with temperature, Heat transfer Asian Research 41 (2), 207-221.
Das, R., & Kundu, B. (2017). Prediction of Heat Generation in a Porous Fin from Surface Temperature. Journal of Thermophysics and Heat Transfer, 31, 781-790.
Dogonchi, A. S., & Ganji, D. D. (2016). Convection-Radiation heat transfer study of moving fin with temperature dependent thermal conductivity, heat transfer coefficient and heat generation, Applied Thermal Engineering, 103, 705-712.
Fazeli, S. A., Hosseini Hashemi, S. M., Zirakzadeh, H., & Ashjaee, M. (2012). Experimental and numerical investigation of heat transfer in a miniature heat sink utilizing silica nanofluid. Superlattices and Microstructures, 1, 247-264.
Gong, L., Li, Y., Bai, Z., & Xu, M. (20018). Thermal performance of micro-channel heat sink with metallic porous/solid compound fin design. Applied Thermal Engineering, 137, 288-295.
Gorla, R. S., & Bakier. A. Y. (2011). Thermal analysis of natural convection and radiation in porous fins. Int. Commun. Heat Mass Transfer, 38, 638-645.
Kanth, A.S.V.R., & Kumar, N. U. (2013). Application of the Haar Wavelet Method on a Continuously Moving Convective-Radiative Fin with Variable Thermal Conductivity. Heat Transfer—Asian Research. 42(4), 1-17.
Khani, F., Raji, M. A., & Nejad, H. H. (2009). Analytical solutions and efficiency of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. Communications in Nonlinear Science and Numerical Simulation, 14, 3327-3338.
Kim S.-M. & Mudawar, I. (2010). Analytical heat diffusion models for different micro-channel heat sink cross-sectional geometries. International Journal of Heat and Mass Transfer, 53, 4002-4016.
Kiwan, S. (2007a). Effect of radiative losses on the heat transfer from porous fins. Int. J. Therm. Sci. 46, 1046-1055
Kiwan, S. (2007b). Thermal analysis of natural convection porous fins. Tran. Porous Media, 67, 17-29.
Kiwan, S., & Al-Nimr, M. A. (2000). Using Porous Fins for Heat Transfer Enhancement. Journal of Heat Transfer, 123, 790-795.
Kiwan, S., & Zeitoun, O. (2008). Natural convection in a horizontal cylindrical annulus using porous fins. Int. J. Numer. Heat Fluid Flow, 18 (5), 618-634.
Kundu, B. & Bhanja, D. (2011). An analytical prediction for performance and optimum design analysis of porous fins. International Journal of Refrigeration, 34, 337-352.
Kundu, B. & Bhanji. D. (2011). An analytical prediction for performance and optimum design analysis of porous fins. Int. J. Refrigeration, 34, 337-352.
Kundu, B., Bhanja, D., & Lee, K. S. (2012). A model on the basis of analytics for computing maximum heat transfer in porous fins. Int. J. Heat Mass Transfer, 55 (25-26), 7611-7622.
Ma, J., Sun, Y., Li, B. W., & Chen, H. (2016). Spectral collocation method for radiative–conductive porous fin with temperature dependent properties. Energy Conversion and Management, 111, 279–288.
Moradi, A., & Rafiee, R. (2003). Analytical Solution to Convection-Radiation of a Continuously Moving Fin with Temperature-Dependent thermal conductivity, Thermal Science, 17, 1049-1060.
Moradi, A., Hayat, T., & Alsaedi, A. (2014). Convection-radiation thermal analysis of triangular porous fins with temperature-dependent thermal conductivity by DTM. Energy Conversion and Management, 77, 70-77.
Mosayebidorcheh, S. Farzinpoor, M. & Ganji, D. D. (2014). Transient thermal analysis of longitudinal fins with internal heat generation considering temperature-dependent properties and different fin profiles. Energy Conversion and Management, 86, 365-370.
Naphon, P., Klangchart, S., & Wongwises, S. (2009). Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. International Communications in Heat and Mass Transfer, 36, 834-840.
Oguntala, G. A., & Abd-Alhameed, R. A. (2017). Haar Wavelet Collocation Method for Thermal Analysis of Porous Fin with Temperature-dependent Thermal Conductivity and Internal Heat Generation. Journal of Applied and Computational Mechanics, 3, 185-191.
Oguntala, G. A., Abd-Alhameed, R. A., Sobamowo, G. M., & Eya, N. (2018). Effects of particles deposition on thermal performance of a convective-radiative heat sink porous fin of an electronic component. Thermal Science and Engineering Progress, 6, 177-185.
Oguntala, G. A., Sobamowo M. G., & Abd-Alhameed, R. (2019). Numerical analysis of transient response of convective-radiative cooling fin with convective tip under magnetic field for reliable thermal management of electronic systems. Thermal Science and Engineering Progress, 9, 289-298.
Oguntala, G. A., Sobamowo M. G., & Abd-Alhameed, R. (2020). A new hybrid approach for transient heat transfer analysis of convective-radiative fin of functionally graded material under Lorentz force. Thermal Science and Engineering Progress, 16, 100467.
Oguntala, G., Abd-Alhameed, R., & Sobamowo, G. (2018). On the effect of magnetic field on thermal performance of convective-radiative fin with temperature-dependent thermal conductivity. Karbala International Journal of Modern Science, 4, 1-11.
Oguntala, G., Abd-Alhameed, R., Oba Mustapha, Z., & Nnabuike, E. (20017). Analysis of Flow of Nanofluid through a Porous Channel with Expanding or Contracting Walls using Chebychev Spectral Collocation Method. Journal of Computational Applied Mechanics, 48, 225-232.
Oguntala, G., Abd-Alhameed, R., Sobamowo, G., & Danjuma, I. (2018). Performance, Thermal Stability and Optimum Design Analyses of Rectangular Fin with Temperature-Dependent Thermal Properties and Internal Heat Generation. Journal of Computational Applied Mechanics, 49, 37-43.
Oguntala, G., Sobamowo, G., Ahmed, Y., & Abd-Alhameed, R. (2018). Application of Approximate Analytical Technique Using the Homotopy Perturbation Method to Study the Inclination Effect on the Thermal Behavior of Porous Fin Heat Sink. Mathematical and Computational Applications, 23, 62.
Ranjan. D. (2011). A simplex search method for a conductive-convective fin with variable conductivity. Int J Heat Mass Transf. 54, 5001–5009.
Rostamiyan, Y., Ganji, D.D., Petroudi, R.I., & Nejad, K.M. (2014). Analytical investigation of nonlinear model arising in heat transfer through the porous fin. Thermal Science, 18, 409-417.
Seyf, H. R., & Feizbakhshi, M. (2012). Computational analysis of nanofluid effects on convective heat transfer enhancement of micro-pin-fin heat sinks. International Journal of Thermal Sciences, 58, 168-179.
Seyfolah Saedodin, M. O. (2011). Temperature distribution in porous fins in natural convection condition. Journal of American Science, 13(6), 812-817.
Singh, S., Kumar, D., & Rai, K. N. (2013). Wavelet Collocation Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. International Journal of Engineering and Advanced Technology, 2(4), 2013.
Singh, S., Kumar, D., & Rai, K. N. (2013). Wavelet Collocation Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. International Journal of Engineering and Advanced Technology, 2(4), 720-745.
Singla, R. K., & Ranjan, D. (2014). Application of decomposition method and inverse parameters in a moving fin, Energy Conversion and Management, 84, 268-281.
Sobamowo, M. G. (2016). Thermal analysis of longitudinal fin with temperature-dependent properties and internal heat generation using Galerkin's method of weighted residual. Applied Thermal Engineering, 99, 1316-1330.
Sobamowo, M. G., Kamiyo, O. M., & Adeleye, O. A. (2017). Thermal performance analysis of a natural convection porous fin with temperature-dependent thermal conductivity and internal heat generation. Thermal Science and Engineering Progress, 1, 39-52.
Sun, Y. S., & Ma, J. (20015). Application of Collocation Spectral Method to Solve a Convective – Radiative Longitudinal Fin with Temperature Dependent Internal Heat Generation, Thermal Conductivity and Heat Transfer Coefficient, Journal of Computational and Theoretical Nano-science, 12, 2851-2860.
Sun, Y., Ma, J., & Li, H. (2015). Spectral collocation method for convective-radiative transfer of a moving rod with variable thermal conductivity. International Journal of Thermal Sciences, 90, 187-196.
Taklifi, A., Aghanajafi, C., & Akrami. H. (2010). The effect of MHD on a porous fin attached to a vertical isothermal surface. Transp Porous Med, 85, 215–31.
Torabi, M., Yaghoobi, H., & Aziz, A. (2012). Analytical Solution for Convective-Radiative Continuously Moving Fin with Temperature-Dependent Thermal Conductivity. Int. J. Thermophysics, 33, 924-941.
Torabi, M., Yaghoobi, H., & Aziz, A. (2012). Analytical solution for convective-radiative continuously moving fin with temperature-dependent thermal conductivity. Int. J Thermophys, 33, 924– 941.
Wan, Z. M., Guo, G. Q., Su, K. L., Tu, Z. K., & Liu, W. (2012). Experimental analysis of flow and heat transfer in a miniature porous heat sink for high heat flux application. International Journal of Heat and Mass Transfer, 55, 4437-4441.