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 In this paper, an ensemble learning method, in the form of extreme gradient 

boosting (XGBoost) algorithm is adopted as an effective predictive tool for 

envisaging values of average surface roughness and material removal rate 

during CNC turning operation of high strength steel grade-H material. In order 

to develop the related models, a grid with 24600 combinations of different 

hyperparameters is created and tested for all the possible hyperparametric 

combinations of the model. The configurations having the optimal values of 

the considered hyperparameters and yielding the lowest training error are 

finally employed for predicting the response values in the CNC turning 

process. The performance of the developed models is finally validated with the 

help of five statistical error estimators, i.e. mean absolute percentage error, 

root mean squared percentage error, root mean squared logarithmic error, 

correlation coefficient and root relative squared error. Based on the favorable 

values of all the statistical metrics, it can be observed that XGBoost can be 

efficiently applied as a predictive tool with excellent accuracy in machining 

processes. 
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1. Introduction 

In the field of manufacturing, machining is the process of removing unwanted material from a given 

workpiece to provide it the required shape and geometry, while meeting the requirements for better surface 

quality and close dimensional tolerance. Among all the machining operations, turning using a non-rotating 

single-point cutting tool plays a significant role in removing material from the outer diameter of a rotating 

cylindrical workpiece while reducing its diameter to a specified size and obtaining a smooth surface after 

machining (Haynes, 2018). It is also known as subtractive machining process. In computer numerical control 

(CNC) turning operation, usually a cylindrically shaped material is clamped on a mandrel and rotated, while a 

cutting tool is fed against it to remove material and generate the desired shape (Lan & Wang, 2009). The turret 

with additional tool is programmed to perform the desired machining operation while generating the required 

part geometries and features based on the input drawing. Although CNC machine tools are more cost-intensive 

and complex in operation as compared to conventional lathes, they outperform their manual counterparts with 

respect to high production rate, flexibility, precision, customization, minimum human error etc. Their 

capability to generate perfect copies of design with minimum human intervention makes them a popular choice 
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in present-day manufacturing industries (Lan & Wang, 2009). Initially high investment for a CNC lathe would 

later be compensated by high volume of production of almost defect-free end products/components.   

Like all other machining processes, the outputs (responses) of a CNC turning operation, like material 

removal rate (MRR), average surface roughness (Ra), tool wear, tool tip vibration, tool-workpiece interface 

temperature, energy consumption etc. are significantly influenced by its several input parameters, such as 

cutting speed (Vc), depth of cut (t), feed rate (f), types of the tool and work material, tool nose radius, workpiece 

hardness, type of the lubricant, machining environment etc. It is usually a customary practice to evaluate the 

quality of a final product based on these responses. For this reason, the concerned process designer/machine 

operator must closely control and better understand the effects and interactions of different turning parameters 

on the responses. Based on the available experimental data, various statistical and machine learning techniques 

can be deployed to effectively model the existent interrelationships between the turning parameters and 

responses (Han & Chi, 2016). The developed models can be employed as predictive tools to envisage the 

tentative response values for a given set of turning parameters. These models can also be applied to perceive 

the responses of CNC turning operations using the same set of input parameters. There are several different 

types of statistical and machine learning techniques employed for this purpose. Table 1 provides a comparative 

study of the most popular statistical and machine learning techniques with respect to problem type, 

assumptions, interpretability, accuracy, training speed, amount of parameter tuning and performance with 

smaller datasets. Due emphasis needs to be provided on these features while choosing an appropriate tool for 

prediction purposes. 

Table 1. Comparative analysis of various statistical and machine learning techniques 

Technique Problem type Assumptions Interpretability 
Predictive 

accuracy 

Training 

speed 

Parameter 

tuning 

Performance 

with small data 

Linear regression Regression Normality Yes Lower Fast None Good 

Logistic regression  Classification Normality Yes Lower Fast None Good 

Linear discriminant 

analysis 
Classification Normality Yes Lower Fast None Good 

k-nearest neighbour Classification None Yes Lower Fast Minimal Poor 

Support vector 

machine 
Both None Yes Lower Fast Minimal Poor 

Naïve Bayes Classification None Somewhat Lower Fast Minimal Good 

Decision trees Both None Somewhat Lower Fast Minimal Poor 

Random forests Both None Somewhat Higher Slow Moderate Poor 

Neural networks Both None No Higher Slow Large Poor 

 

Extreme gradient boosting (XGBoost) supersedes the other machine learning algorithms in regard of 

predictive accuracy, training speed, normality assumption of the input variables, interpretability, requirement 

of minimal tuning parameters etc. For its effective application as classification and regression tool, the existent 

relationship between the input and output variables needs not to be always linear. These advantageous features 

of XGBoost algorithm thus make it a suitable choice among the research community as a regressor to predict 

output variables based on a set of input variables. Its interpretability is comparable with that of random forests, 

but its predictive accuracy is higher than random forests when trained properly with the corresponding 

hyperparameters.  

XGBoost has already found wide-ranging applications in diverse domains of manufacturing. Kiangala and 

Wang (2021) employed both XGBoost and random forest to develop an adaptive and effective customization 

framework in a real-time Industry 4.0 environment, leading to synchronization of a single customer input with 

better customizable outputs from a manufacturing process. Deng et al. (2019) endeavoured to predict bead 

geometry for a multi-layer wire and arc additive manufacturing process based on the application of XGBoost 

algorithm. It was noticed that XGBoost would outperform artificial neural networks even with a small dataset 

which could otherwise lead to overfitting of the model. In material science, the relationship between steel 

properties, their compositions and manufacturing parameters is extremely difficult to comprehend. For this 

purpose, Song et al. (2020) adopted linear regression, support vector machine and XGBoost to determine the 

mapping functions between tensile strength, plasticity and other influencing factors for steel. The developed 

mapping functions were later employed as the fitness values of particle swarm optimization technique to 

propose a steel property optimization model. Finally, the experimental results were analyzed theoretically, 

demonstrating superiority of XGBoost over the over considered algorithms. Gao et al. (2019) applied XGBoost 

algorithm as a material removal prediction model for robotic belt grinding operation of Inconel 718 material. 
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A comparative study of the derived results showed its supremacy over other machine learning algorithms, like 

support vector machine, radian function model etc.    

In quality monitoring, Chen et al. (2019) examined the relationships between welding current, welding 

speed, energy input and weld bead geometry during metal active gas welding operation. Based on XGBoost, 

two data driven models were proposed to recognize penetration status and predict bead reinforcement quality. 

A novel regression model, in the form of random forest-principal component analysis-XGBoost, was developed 

by Zhang et al. (2021) for on-line prediction of seam tensile strength of Al-Li alloy during laser welding 

process. Excellent coefficient of determination values proved the efficacy of the proposed XGBoost-based 

approach over the other tree-based ensemble learning models as predictive tools.  

Another investigation on fatigue strength behaviour of steels was conducted by Choi (2019). Six different 

numerical models were designed for predicting fatigue strength of steel, and with the help of statistical 

inference analysis, superiority of XGBoost algorithm over the others was validated. While predicting tool wear 

during a drilling operation, Alajmi et al. (2020) proved the effectiveness of XGBoost algorithm against support 

vector machine and multilayer perception artificial neural network. Although this algorithm has been 

successfully employed in different discrete domains of manufacturing, its application as an efficient predictive 

tool based on real-time machining data is really scarce. Thus, this paper presents the application of XGBoost 

algorithm to envisage values of MRR (in mm3/min) and Ra (in µm) during CNC turning operation of high 

strength grade-H steel material.  

2. Experimental data 

Taking into consideration Vc, t and f as the input parameters, and MRR and Ra as the responses, Abbas et 

al. (2017) conducted 53 (125) experiments using an EMCO Concept Turn CNC lathe equipped with Sinumeric 

840-D controller on high strength grade-H steel materials. During the turning operation, an uncoated tungsten-

carbide insert was employed as the cutting tool. The work material, also known as ‘gun steel’, has found wide 

applications in manufacturing of gun barrel and muzzle brake as military and civilian products. Before the 

turning operation, the workpiece was forged into cylindrical form and subsequently annealed to remove the 

residual stresses. All the turning parameters were varied at five different operating levels, as shown in Table 2. 

The experimental details and values of the measured responses are provided in Table 3. Among 125 

experimental observations (classified into 25 groups), group numbers 3, 10, 14, 16 and 22 are randomly chosen 

for testing the prediction performance of XGBoost algorithm, whereas, the remaining 20 groups are utilized 

for training of this algorithm. 

Table 2. CNC turning parameters and their levels (Abbas et al., 2017) 

Turning parameter Unit 
Level 

1 2 3 4 5 

Cutting speed m/min 75 100 125 150 175 

Depth of cut mm 0.15 0.3 0.45 0.6 0.75 

Feed rate mm/rev 0.02 0.04 0.08 0.16 0.32 

3. XGBoost as a predictive tool 

In machine learning, a subfield of artificial intelligence, statistical methods are employed to train machines 

so that they can mimic human behaviour. Thus, the goal of machine learning algorithms is to better generalize 

existing problems while providing accurate solutions. To achieve the desired goal, the designers need to train 

different learners which due to the presence of randomness in the data may often become very weak. Ensemble 

learning is a prototype of machine learning (Zhou, 2009) where several learners are combined together to act 

as an effective prediction tool. The two most commonly used ensemble learning methods are bagging and 

boosting (Oza& Russell, 2001). Bagging aggregation or bootstrapping is a parallel aggregation method, while 

boosting is considered as a sequential aggregation method. The ensemble learning model is found to be most 

suitable for machine learning techniques which are usually unstable, like decision trees, ANN etc. (Kittler 

&Roli, 2003). It helps the learners to be aggregated together so that they can provide different generalization 

patterns, while minimizing variability in the model to some extent (Brown, 2011). The XGBoost algorithm 

belongs to the second group of ensemble learning model, and can be employed for both   regression and 

classification purposes (Friedman, 2001; Chen & Guestrin, 2016). The evolution process from a simple 

decision tree to XGBoost is illustrated in Figure 1. 
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Table 3. Experimental data (Abbas et al., 2017) 

Group Vc t f Ra MRR Group Vc t f Ra MRR 

1 

75 0.15 0.020 0.100 225 

14 

125 0.60 0.020 0.292 1500 

75 0.15 0.040 0.212 450 125 0.60 0.040 0.558 3000 

75 0.15 0.080 0.650 900 125 0.60 0.080 1.005 6000 

75 0.15 0.160 1.415 1800 125 0.60 0.160 2.028 12000 

75 0.15 0.320 3.121 3600 125 0.60 0.320 4.030 24000 

2 

75 0.30 0.020 0.152 450 

15 

125 0.75 0.020 0.441 1875 

75 0.30 0.040 0.368 900 125 0.75 0.040 0.670 3750 

75 0.30 0.080 0.738 1800 125 0.75 0.080 1.118 7500 

75 0.30 0.160 1.645 3600 125 0.75 0.160 2.028 15000 

75 0.30 0.320 3.312 7200 125 0.75 0.320 4.119 30000 

3 

75 0.45 0.020 0.182 675 

16 

150 0.15 0.020 0.123 450 

75 0.45 0.040 0.389 1350 150 0.15 0.040 0.254 900 

75 0.45 0.080 0.798 2700 150 0.15 0.080 0.783 1800 

75 0.45 0.160 1.699 5400 150 0.15 0.160 1.698 3600 

75 0.45 0.320 3.386 10800 150 0.15 0.320 3.745 7200 

4 

75 0.60 0.020 0.261 900 

17 

150 0.30 0.020 0.184 900 

75 0.60 0.040 0.499 1800 150 0.30 0.040 0.442 1800 

75 0.60 0.080 0.898 3600 150 0.30 0.080 0.885 3600 

75 0.60 0.160 1.811 7200 150 0.30 0.160 1.974 7200 

75 0.60 0.320 3.599 14400 150 0.30 0.320 3.974 14400 

5 

75 0.75 0.020 0.394 1125 

18 

150 0.45 0.020 0.218 1350 

75 0.75 0.040 0.599 2250 150 0.45 0.040 0.467 2700 

75 0.75 0.080 0.999 4500 150 0.45 0.080 0.957 5400 

75 0.75 0.160 1.811 9000 150 0.45 0.160 2.038 10800 

75 0.75 0.320 3.678 18000 150 0.45 0.320 4.063 21600 

6 

100 0.15 0.020 0.106 300 

19 

150 0.60 0.020 0.313 1800 

100 0.15 0.040 0.225 600 150 0.60 0.040 0.598 3600 

100 0.15 0.080 0.688 1200 150 0.60 0.080 1.077 7200 

100 0.15 0.160 1.497 2400 150 0.60 0.160 2.173 14400 

100 0.15 0.320 3.311 4800 150 0.60 0.320 4.318 28800 

7 

100 0.30 0.020 0.162 600 

20 

150 0.75 0.020 0.472 2250 

100 0.30 0.040 0.389 1200 150 0.75 0.040 0.718 4500 

100 0.30 0.080 0.782 2400 150 0.75 0.080 1.198 9000 

100 0.30 0.160 1.743 4800 150 0.75 0.160 2.173 18000 

100 0.30 0.320 3.504 9600 150 0.75 0.320 4.413 36000 

 

 

8 

100 0.45 0.020 0.193 900 

 

 

21 

175 0.15 0.020 0.128 525 

100 0.45 0.040 0.412 1800 175 0.15 0.040 0.272 1050 

100 0.45 0.080 0.845 3600 175 0.15 0.080 0.832 2100 

100 0.45 0.160 1.798 7200 175 0.15 0.160 1.812 4200 

100 0.45 0.320 3.585 14400 175 0.15 0.320 3.994 8400 

9 

100 0.60 0.020 0.276 1200 

22 

175 0.30 0.020 0.195 1050 

100 0.60 0.040 0.527 2400 175 0.30 0.040 0.471 2100 

100 0.60 0.080 0.950 4800 175 0.30 0.080 0.945 4200 

100 0.60 0.160 1.916 9600 175 0.30 0.160 2.106 8400 

100 0.60 0.320 3.807 19200 175 0.30 0.320 4.239 16800 

10 

100 0.75 0.020 0.416 1500 

23 

175 0.45 0.020 0.232 1575 

100 0.75 0.040 0.633 3000 175 0.45 0.040 0.497 3150 

100 0.75 0.080 1.057 6000 175 0.45 0.080 1.021 6300 

100 0.75 0.160 1.916 12000 175 0.45 0.160 2.174 12600 

100 0.75 0.320 3.891 24000 175 0.45 0.320 4.334 25200 

11 

125 0.15 0.020 0.112 375 

24 

175 0.60 0.020 0.334 2100 

125 0.15 0.040 0.237 750 175 0.60 0.040 0.638 4200 

125 0.15 0.080 0.728 1500 175 0.60 0.080 1.149 8400 

125 0.15 0.160 1.585 3000 175 0.60 0.160 2.318 16800 

125 0.15 0.320 3.495 6000 175 0.60 0.320 4.606 33600 

12 

125 0.30 0.020 0.170 750 

25 

175 0.75 0.020 0.504 2625 

125 0.30 0.040 0.412 1500 175 0.75 0.040 0.767 5250 

125 0.30 0.080 0.826 3000 175 0.75 0.080 1.278 10500 

125 0.30 0.160 1.843 6000 175 0.75 0.160 2.318 21000 

125 0.30 0.320 3.709 12000 175 0.75 0.320 4.707 42000 
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Table 3. Continued 

13 

125 0.45 0.020 0.203 1125 

 

125 0.45 0.040 0.435 2250 

125 0.45 0.080 0.893 4500 

125 0.45 0.160 1.902 9000 

125 0.45 0.320 3.792 18000 

 

 

Figure 1. Evolution of XGBoost from a simple decision tree 

In decision trees, a universe of objects is defined with a collection of attributes (Quinlan, 1986). When these 

attributes (discrete or continuous, categorical or numerical) are taken together, they characterize the objects 

belonging to two or more sets of mutually exclusive classes. As these decision trees suffer from the problem 

of instability, ensemble learning models are applied to combine them while providing more stability as well as 

predictive accuracy. In bagging, these decision trees are coupled together and the final solution is derived after 

taking into account the output from each of the decision trees. Regression-based problems can also be solved 

using bagging technique where all the decision trees are combined and their average value is considered as the 

final solution. Another tree-based bagging process is random forest where different tuning parameters, like tree 

depth, number of trees in each split etc. are utilized to reduce variability in the model.  

On the other hand, boosting is an ensemble learning technique where models are constructed in sequential 

order with a goal to minimize the learning error in each sequential step. One of the most widely used and 

popular boosting techniques is Adaboost where weak learners are strengthened to have better results (Schapire, 

2013). The boosting techniques have further been modified with the arrival of gradient boosting models where 

gradient descent algorithms are deployed to minimize errors in the sequential models more quickly and 

accurately. Catboost is one such boosting technique where gradient boosting mechanism is employed 

(Dorogush et al., 2018). 

The predictive power of gradient boosting techniques has been rapidly changed with the arrival of XGBoost 

algorithm with introduction of more additive optimization of the functional space. In XGBoost, besides the 

usual regularization of gradient boosting techniques, two additional features, i.e. shrinkage and column 

subsampling have been incorporated to prevent overfitting of data and increase robustness of the model 

(Friedman, 2002). Shrinkage, which is analogous to learning rate in stochastic optimization, scales the newly 

added weights by a factor after each step of tree boosting. It minimizes the influence of each tree, leaving space 

for future trees to further improve the model. On the other hand, column subsampling greatly reduces the 

computational time of this algorithm (Friedman & Popescu, 2003). In order to fit the data into an XGBoost 

model, appropriate parameter values need to be selected. In this paper, to predict responses of the said CNC 

turning process using XGBoost algorithm, open-sourced software R is used (Wickham et al., 2019). In 
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XGBoost algorithm, there are mainly two types of parameters, i.e. booster parameters and learning task 

parameters which are briefly discussed as below (Chen et al., 2015):  

Booster parameters 

a) min_child_weight: It refers to the minimum ‘sum of weights’ of an observation and is quite similar 

to the minimum child leaf of gradient boosting machine. The default value is 1 and its higher value 

may lead to data overfitting.  

b) max_leaf_nodes: Maximum number of terminal nodes or leaves in a decision tree is denoted by 

this parameter. For binary trees, a depth of ‘n’ would produce a maximum of 2n number of leaves. 

c) nrounds: It is the number of trees that the model should have. Its value can be set based on intuition 

or with the help of fine hyperparametric tuning. 

d) gamma:Gamma specifies the minimum loss reduction required to perform the split while making 

the algorithm more conservative. The corresponding default value is 0. If there is a positive 

reduction in the loss function, then only a node is split.  

e) max_delta_step: In maximum delta step, the weight of each tree is estimated. Its zero value 

represents no restriction in weight estimation. Setting it to a positive value makes the upgrade step 

more conservative. Although specifying its value is not mandatory, but it may help in optimal 

binary regression when the classes are extremely unbalanced. 

f) eta: Having a default value of 0.3, it basically controls the learning rate. It scales the contribution 

of each tree by a given factor. When its value is low, the model would become more robust to 

overfitting, but at the same time, the convergence time would increase.  

g) early_stopping_rounds: This parameter denotes the number of rounds the model should be run 

before stopping without having any improvement. The improvement is measured with respect to 

root mean squared value. Although, the value of early stopping round depends on the designer, it 

is usually set as 3 or 5. 

h) max_depth: It represents the greatest depth to which a tree can grow. If its value is set too low, the 

model would not be able to learn important features, resulting in underfitting. On the other hand, 

in case of its higher value, the model would learn relationships that are particularly specific to that 

dataset, resulting in overfitting. Its value is set to 6 as default. 

i) subsample: It denotes the score of an observation that would be a random sample of each tree. Its 

typical value is 1. A higher value of subsample would make the algorithm more conservative and 

prevent overfitting, but its lower value would lead to underfitting.  

Learning task parameters 

a) objective:It defines the objective function of XGBoost model which may be either regression or 

classification. 

b) eval_metric: It is employed to validate predictive performance of a model. Among different types 

of evaluation metrics, like root mean squared error (RMSE), mean absolute error (MAE), logloss, 

error, merror, mlogloss and auc, RMSE and error are respectively considered as the default metrics 

for regression and classification.  

c) seed: This is a random number used when reproducibility is needed. 
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Figure 2. Grid search and random search 

The test error of a statistical learning algorithm has two components, i.e. bias and variance. Bias is the error 

induced in the model due to simplification of different model assumptions. It can be stated as the difference 

between average prediction of the developed model and actual value that it is attempting to predict. A highly 

biased model pays less attention to the training data and oversimplifies the model. It always leads to higher 

errors in training and test data. Variance is the error induced by randomness of the training data. High variance 

models pay close attention to the training data without generalizing the data. Therefore, these models perform 

very well on training data, but may have a high error rate on test data. The trade-off between bias and variance 

is determined by the complexity of the model and amount of training data (James et al., 2013). Optimal 

selection of hyperparameters in a model helps to avoid both overfitting and underfitting of data. These 

hyperparameters are learned from the data and are tuned properly to achieve best fit of the data. As searching 

values of these hyperparameters is a tedious and time-consuming process, grid search and random search 

techniques are applied to resolve this problem, as shown in Figure 2.  

In grid search, a possible set of values is considered for testing and the model is run on all these values, 

followed by subsequent evaluation of different statistical metrics, like MAE, RMSE etc. to check predictive 

accuracy of the considered model. The combination of hyperparameters yielding lowest error value would be 

selected. In random search, instead of providing the model with all possible values of the hyperparameters, 

their statistical distributions are considered. The model would then randomly sample values from those 

distributions and employ them for training. The subsequent steps of random search are quite similar to grid 

search. Random search is comparatively quicker because only a subset of features is considered for 

hyperparameter tuning. But, as grid search covers all possible combinations of the hyperparameters, it can yield 

more accurate model. In this paper, grid search technique is employed for hyperparameter optimization. Among 

all the huperparameters, nrounds, eta and max_depth are considered here for tuning as they are noticed to be 

more sensitive influencing the derived solutions (James et al., 2013). The other hyperparameters are set at their 

default values. The corresponding grid is now developed with the following configuration of the considered 

hyperparameters, as shown in Table 4. 

Table 4. Grid search configuration 

Hyperparameter Lowest value Highest value Step size Number of combinations 
nrounds 1 1000 10 100 

eta 0.2 1 0.02 41 
max_depth 1 6 1 6 

 

It can be noticed from Table 4 that a total of 100×41×6 = 24600 possible combinations of the 

hyperparameters is generated from this configuration. Now, the model is run 24600 times twice, each for MRR 

and Ra, to determine the optimal values of the considered hyperparameters based on the minimum RMSE 

values. The optimal values of those hyperparameters for MRR and Ra are provided in Table 5.  
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Table 5. Optimal values of the hyperparameters 

Hyperparameter MRR Ra 
nrounds 61 71 

Eta 0.64 0.2 
max_depth 3 6 

 

A sample decision tree obtained using XGBoost algorithm for MRR is depicted in Figure 3. Similar type 

of sample decision tree is also developed for Ra, but not included in this paper due to paucity of space and 

illegibility. Between these two sample decision trees, the decision tree for Ra is longer and more complex for 

its higher value ofmax_depth (6 as compared to 3 for MRR). The gain value in Figure 3 refers to the relative 

contribution of a feature to the model and can be mathematically expressed as follows:  

Gain = Loss (Parent instance) – (Loss (Upper branch) + Loss (Lower branch)) (1) 

The loss value would decrease if the model is successfully trained, resulting in decrement of the gain value 

in the subsequent branch. There are also two other metrics for XGBoost algorithm, i.e. cover and frequency. 

The cover metric signifies the relative number of observations related to a particular feature, whereas, 

frequency represents the percentage of occurrence of a particular feature in the tree. The values of gain, cover 

and frequency are provided in Table 6 for both the responses of the CNC turning process. On the other hand, 

Table 7 presents values of MRR and Ra as predicted by the adopted XGBoost algorithm. 
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Figure 3. Sample trees for MRR 

Table 6. Values of gain, cover and frequency for the responses 

Feature 
MRR Ra 

Gain Cover Frequency Gain Cover Frequency 

f 0.658103 0.359911843 0.35111513 0.983251955 0.428608633 0.269946809 

t 0.309131 0.321772416 0.306811332 0.009602583 0.293931897 0.402925532 

Vc 0.032766 0.318315741 0.342073538 0.007145462 0.27745947 0.32712766 

Table 7. Predicted values of Ra and MRR 

Parameter Ra MRR 

Vc t f Actual Predicted Actual Predicted 

75 0.45 0.020 0.182 0.180269 675 774.8272 

75 0.45 0.040 0.389 0.400073 1350 1363.472 

75 0.45 0.080 0.798 0.810117 2700 3457.42 

75 0.45 0.160 1.699 1.752465 5400 6078.112 

75 0.45 0.320 3.386 3.482308 10800 13170.44 

100 0.75 0.020 0.416 0.413105 1500 1761.1 

100 0.75 0.040 0.633 0.618138 3000 2833.533 

100 0.75 0.080 1.057 1.041479 6000 5781.07 

100 0.75 0.160 1.916 1.921121 12000 11869.81 

100 0.75 0.320 3.891 3.887996 24000 23521.51 

125 0.60 0.020 0.292 0.304922 1500 1303.875 

125 0.60 0.040 0.558 0.578894 3000 2808.375 
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Parameter Ra MRR 

Vc t f Actual Predicted Actual Predicted 

125 0.60 0.080 1.005 1.022298 6000 5387.497 

125 0.60 0.160 2.028 2.023321 12000 11237.71 

125 0.60 0.320 4.030 4.040278 24000 24654.71 

150 0.15 0.020 0.123 0.124682 450 700.1729 

150 0.15 0.040 0.254 0.272165 900 1184.37 

150 0.15 0.080 0.783 0.82308 1800 2367.317 

150 0.15 0.160 1.698 1.79762 3600 4056.622 

150 0.15 0.320 3.745 3.901673 7200 8011.993 

175 0.30 0.020 0.195 0.192573 1050 1157.703 

175 0.30 0.040 0.471 0.454538 2100 2391.617 

175 0.30 0.080 0.945 0.928982 4200 3688.161 

175 0.30 0.160 2.106 2.093483 8400 7564.548 

175 0.30 0.320 4.239 4.184501 16800 14883.51 

 

In order to validate the prediction accuracy of the XGBoost algorithm for this CNC turning process, five 

different statistical error estimators, i.e. mean absolute percentage error (MAPE), root mean squared percentage 

error (RMSPE), root mean squared logarithmic error (RMSLE), correlation coefficient (R) and root relative 

squared error (RRSE) are considered here. The mathematical expressions of these metrics are provided as below 

(Bhattacharya et al., 2021): 
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where Ai and Pi are the actual and predicted responses respectively, A  and P  are the means of all the actual 

and predicted responses respectively, and n is the number of observations in the test dataset. Based on the 

above-mentioned formulations, the corresponding statistical metrics are calculated, as shown in Table 8. 

Among them, lower values of MAPE, RMSPE, RMSLE and RRSE are always preferred, whereas, higher value 

of R is recommended for validating the performance of any of the prediction tools. Excellent values of all the 

considered statistical metrics strongly prove the efficacy and potentiality of XGBoost algorithm in almost 

accurately envisaging the response values of the said CNC turning operation.   
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Table 8. Statistical metrics for Ra and MRR 

Statistical metric Ra MRR 

MAPE 2.34 13.88 
RMSPE 3 18.33 
RMSLE 0.014 0.16 

R 0.99 0.99 

RRSE 0.035 0.115 

 

4. Conclusions 

To accurately envisage response values in any of the machining processes, selection of the most appropriate 

machine learning technique in the form of an effective predictive tool plays an important role. In this paper, 

XGBoost algorithm is employed for predicting two responses, i.e. MRR and Ra of a CNC turning process with 

cutting speed, depth of cut and feed rate as the input parameters. Optimal values of different hyperparameters 

for implementation of this algorithm are selected with the help of grid search method. Excellent values of all 

the considered statistical metrics prove the efficacy and higher prediction accuracy of XGBoost algorithm for 

the said machining process. The potentiality of this model can be further extended while considering other 

categorical variables depicting varying operational conditions of a CNC turning process, like operator’s skill 

level, types of the work material and cutting tool, coolant type etc. In the similar direction, the appropriateness 

of XGBoost algorithm can be further validated with the help of experimental datasets from CNC milling and 

different non-traditional machining processes. 
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