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 We suggest a detachment criterion for a viscoelastic elastomer contact based 

on Griffith's idea about the energy balance at an infinitesimal advancement of 

the boundary of an adhesive crack. At the moment of detachment of a surface 

element at the boundary of an adhesive contact, there is some quick (instant) 

relaxation of stored elastic energy which can be expressed in terms of the creep 

function of the material. We argue that it is only this "instant part" of stored 

energy which is available for doing work of adhesion and thus it is only this 

part of energy relaxation that must be used in Griffith's energy balance. The 

described idea has several restrictions. Firstly, in this pure form, it is only valid 

for adhesive forces having an infinitely small range of action (which we call 

the JKR-limit). Secondly, it is only applicable to non-entropic (energetic) 

interfaces, which detach "at once" and do not possess their own kinetics of 

detachment. 
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1. Introduction 

Adhesion of elastic bodies can be understood and described using the principle of virtual work. For non-

dissipative systems it can be used in the form of "energy balance", first suggested by Griffith (1921) and used 

in the theory of Johnson, Kendall and Roberts (1971), (Popova & Popov, 2018). This approach cannot be 

applied to situations where dissipative forces are in play, in particular to tangential adhesive contacts and to 

adhesive contacts of viscoelastic bodies. However, the principle of energy balance is so simple and attractive 

that it is used even if is not applicable, by introducing an effective work of adhesion and postulating it 

dependence on the crack propagation velocity (see e.g. Barquins & Maugis, 1981). We would like to revisit 

this approach and to argue that it might be possible to apply the energy balance principle in a pure and exact 

way to viscoelastic adhesive contacts. If the characteristic time of stress relaxation in the elastomer is much 

larger then the characteristic time of detachment, then one could think of detachment as a practically instant 

process. If the loaded surface of a viscoelastic body is instantly unloaded, then there is always some instant 

elastic relaxation followed by slow relaxation depending on the detailed rheology of the medium. The 

detachment can only occur if the instant relaxation part of the elastic energy is equal to the work of separation 

of surfaces. This means that the energy balance can be used for viscoelastic bodies too, in a modified form. 

It is important to clearly understand that in viscoelastic contacts there can be two independent kinetic 

processes and correspondingly two independent "rheologies": the first one related to the internal processes in 

the volume of the material and the second one related to the process of detachment. For example, if two 

mailto:v.popov@tu-berlin.de


                ISSN: 2683-5894 

Reports in Mechanical Engineering, Vol. 2, No. 1, 2021:  57 – 64 

58 

elastomers are in contact, one can imagine that their molecules are tangled up and must be disentangled to 

separate. This is a process that might take some time and might be strongly dependent on the temperature. On 

the other hand, if an elastomer is in contact with a smooth solid, this disentanglement does not occur, and the 

separation occurs just by overcoming some critical stress. One can say that the first type of interfaces is 

viscoelastic and the second one elastic (even while the volume properties remain viscoelastic in both cases).   

In analogy with material classes, we can speak of "energetic" (elastic) and "entropic" (viscoelastic) surface 

interactions ( Figure 1). Under energetic interactions we understand interactions dominated by the 

potential interaction energy. 

 

 

 Figure 1. Energetic (a) and entropic (b) surface interactions  

In the present paper only the case of energetic interfaces will be considered, as it allows to more clearly 

describe the suggested idea. The detachment criterion will be explained in the following using the Method of 

Dimensionality Reduction (MDR). Normally, one discusses the crack propagation in terms of the stress 

concentration factors. But it can be equivalently described in the framework of the Method of Dimensionality 

Reduction. While the results obtained in the direct three-dimensional presentation and the MDR are equivalent, 

the great difference is in the simplicity of thinking and analysis. The MDR-presentation is especially useful in 

the case where there is a scale separation of processes in the considered system. In the real space presentation, 

there is a singularity at the edge of the crack, so the scale separation is not "visible" (as all processes are 

infinitely rapid). In the MDR, on the contrary, no singularity exists, and the scale separation becomes obvious. 

In Section 2, we briefly describe the main calculation steps of the MDR.   

2. Solution of the adhesive normal contact problem of elastic bodies in the framework of the 

Method of Dimensionality Reduction 

The calculation method via the MDR consists of the following steps (Popov, 2017): In the first step the 

given three-dimensional profile ( )z f r  is transformed into an equivalent plane profile ( )g x  via equation: 

 
2 2

0

( )
( ) d

x

f r
g x x r

x r





  (1) 

(going back to the theory by Schubert (Popova & Popov, 2020)). The profile ( )g x  is now pushed into the one-

dimensional elastic foundation, a series of springs with the spacing x  and stiffness 

 *

z
k E x   , (2) 

until a contact radius a is reached, where the the effective elasticity modulus *
E  is defined as: 
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1 2
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E EE

  
  . (3) 

This process is depicted in Figure 2 on the left. In the third step, the indenter is lifted up. It is assumed that all 

springs involved in the contact adhere to the indenter - the contact radius thus remains constant. In this process, 

the springs at the edge experience the maximum increase in tension. Upon reaching the maximum possible 

elongation of the outer springs 
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they detach. This criterion was discovered by Heß (2011) and is known as the rule of Hess.  

This rule can be easily derived using the principle of virtual work. According to this principle, the system 

is in equilibrium when the energy does not change for small variations of its generalized coordinates. Applied 

to the adhesive contact, it means that the change in the elastic energy for a small reduction of the contact radius 

from a  to a x  is equal to the change in the surface energy 2 a x   , where   is the separation work of 

the contacting surfaces per unit area. Since the MDR maps the relation of force to displacement exactly, the 

elastic energy is also reproduced exactly.  The change in the elastic energy can, therefore, be calculated directly 

in the MDR model. Due to the detachment of each one spring at the edge of the contact, the elastic energy is 

reduced by 
* 2

E x l  . Balance of the changes in the elastic and the adhesive energy results in 

 * 2
2 a x E x l       (5) 

which results in (4). 

The corresponding equilibrium described by the three quantities ( ,  ,  )F d a  provides the exact solution to 

the adhesive contact problem.  The displacement of the outer springs is negative, with the absolute value equal 

to the critical value:    1D
w a l a  . It follows that 

    d g a l a   .  (6) 

The normal force is given by the equation  

  *

0

2 d

a

N
F E d g x x    . (7) 

 

Figure 2. Representation (in the framework of MDR) of the indentation and lifting process of a 

spherical 1D-indenter with an elastic foundation, which exactly models the properties of the 

adhesive contact between a rigid spherical indenter and an elastic half-space. 

Note that the same energetic balance method was used in (Pohrt & Popov, 2015) and (Popov et al., 2017) 

for deriving the detachment criterion of single simulation cells in the Boundary Element Method.  

3. Energetic detachment criterion in the case of a viscoelastic material 

The Method of Dimensionality Reduction can be applied also to viscoelastic contacts by replacing "springs" 

with corresponding rheological elements as defined in (Popov et al., 2018). This representation has the form: 
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in the time domain, where ( )G t  is the time dependent shear modulus, or in the frequency domain, 
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with  Ĝ   being the complex frequency dependent shear modulus.  

Linear rheology can always be represented by a generalized Maxwell element consisting of a soft spring 

and a series of Maxwell elements with different stiffness and damping connected in parallel (relaxation 

element, Figure 3a) or as a series of Kelvin elements connected in series (creep element, Figure 3b). In the 

general discussion, we will use the second presentation.  

 

              
   a      b 

Figure 3. Generalized Maxwell element (a) and generalized relaxation element (b) for simulation 

of an arbitrary linear rheology. The elements are equivalent if the parameters are chosen 

correspondingly. 

For viscoelastic rheology, each "spring" in Figure 2 is replaced by a creep element shown in Figure 3b. If 

the body is lifted, the element at the edge of the contact will have an elongation l . However, now this 

elongation is a sum of elongations of all "subelements" of the creep element, 
0 1

... ...
n

l l l l         , 

where 
0

l  is the elongation of the spring 
0

G , 
1
l  the elongation of the Kelvin-Element 

1 1
( , )G  , and so on. 

Now let us assume that the element detaches from the indenter. Some part of the energy will relax very quickly, 

"at once". This is the part which is stored in the spring 
0

G . And only this part can be "used" for the formation 

of new surfaces, for the work of adhesion. The elastic energy stored in all Kelvin elements will need some time 

to be relaxed. But the detachment occurs at a molecular scale, and thus, from a macroscopic point of view, 

instantly. The detachment can occur only if the elastic energy which is available "at once" is enough for doing 

the work of adhesion. Further, as the instant reaction of a viscoelastic medium is purely elastic, we are therefore 

empowered to use the energy balance and to equate the energy  
2

0

0
2 4

2

l
G x


   to the work of adhesion, 

2 a x   , where   is the specific work of adhesion:  

   2

0 0
2 4a x G x l      , (10) 

which looks exactly like the detachment criterion (5) for the elastic case, with the only difference that 0
G  is 

now the glass modulus of the medium and 0
l  is only part of the total elongation. Note that we consider here 

the case of energetic interfaces, thus we assume that  is a well-defined material parameter which does not 

depend on the velocity of detachment. How large the elongation part 0
l is depends on the loading history. 

Solving Eq. (10) with respect to 0
l  gives 

 
0

0

   
2

a
l

G

 
  . (11) 

4. Detachment criterion for viscoelastic media in the Boundary Element Method (BEM) 

Let us consider the simplest discretization of the contacting surfaces consisting of square elements with the 

side length   as shown in Figure 4. The complete procedure of BEM for the non-adhesive contact of 

viscoelastic materials is described in (Kusche 2016). In each calculation iteration of the BEM, the stress and 

displacement of each particular discretization element are determined, and it is decided if the element should 

still remain in contact. For non-adhesive contacts this is the case if the pressure remains positive. In an adhesive 

contact, pressures may become negative and thus a more elaborate rule of detachment is needed. Pohrt & Popov 

(2015) suggested to make the decision about detachment of a single element based on the Griffith' energy 

criterion: the element would detach if the energy released by its detachment exceeds the work of adhesion. As 
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the instant reaction of the medium to the sudden vanishing of stress is purely elastic, we can calculate the 

instant relaxation energy using the theory of elasticity (Pohrt & Popov, 2015): 

  
   

2

0 0 0

2

* *

0
2 2

1
d d d d

2
el

U x y x y
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  
    ,  (12) 

where  
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 . (13) 

 Equating the elastic energy to the work of adhesion, 

   2

el adh
U U     , (14) 

we come to the following criterion for detachment: 

 
*

0.473201
c

E 



 


.  (15) 

In the above equations, we use the elastic modulus *
E  responsible for the instant relaxation, which is the glass 

modulus. For an incompressible medium 
0

*
4E G  and we finally find 

 0

0.47

4

3201
c

G 



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
. (16) 

 

Figure 4. In each calculation step, stress in each particular discretization element is determined. If 

the stress   in a given element at the boundary of the contact area exceeds the critical value, it is 

“detached” and the stress in this element is set to zero.  

Thus, the detachment criterion coincides with that found by Pohrt & Popov (2015), with the only difference 

that the modulus which should be used is the glass modulus. 

5. Detachment of a parabolic indenter from a viscoelastic half-space described by the 

"Standard model" 

We now illustrate the idea described above on an example of an adhesive contact between a rigid parabolic 

indenter and a viscoelastic medium with rheology described by the "standard model", illustrated in Figure 5. 

 

Figure 5. "Standard model" for an elastomer. 

Consider a rigid parabolic indenter having the shape 
2

/ (2 )z r R , where r  is the in-plane polar radius and 

R  the radius of curvature. The indenter is first pressed into the viscoelastic medium to the depth 0
d  and 

remains in that state for a long enough time, so that all relaxation processes can be considered as completed. 
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After that, the indenter is lifted with a constant velocity 
0

v . To solve this problem, we again use the method of 

dimensionality reduction. According to (1), the three-dimensional profile 
2

/ (2 )r R  is replaced by the plane 

profile 
2

( ) /g x x R . For all points of the viscoelastic foundation which are in contact with the indenter, the 

vertical displacement is given by the equation 

 
2 2

1D, 0 0
( ) ( ) / /

z
u x d t x R d v t x R     . (17) 

This displacement is the sum of the elongation 
0G

u  of the spring 
0

G  and 
1G

u  of the spring 
1

G : 

 
0 11D, 

( )
z G G

u x u u  . (18) 

 The force equilibrium at the connection point between the spring 
0

G  and the Kelvin element 
1 1

( , )G   reads 

 
0 1 10 1 1G G G

G u G u u  . (19) 

From (17), (18) and (19), it follows that 

 
1 1

2

1 1

0 0

0 0

1
G G

Gx
d v t u u

R G G

 
     

 
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The initial condition for this equation follows from (19), (18), (17) by setting 
1

0
G

u  : 
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The general solution of Eq. (20) with initial condition (21) is 
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Correspondingly,  
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The detachment criterion (11) for springs at the edge of the contact, x a , reads 

 
2

/0 0 1

0 0 0

1 1 0
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tG G Ga
d v t v e

GR G G

a
 

   
    


  
  

. (25) 

This equation gives an implicit dependency of the contact radius on time. 

Quasistatic limiting case 

In the limiting case of very small pulling velocity, the term with the exponential function can be neglected, and 

the detachment criterion takes the form  
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0 0
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G Ga
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Assuming 0 1
G G , this equation can be rewritten as 
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This is the standard JKR equation for a medium with the effective elastic modulus *

1
4E G  and effective 

work of adhesion 
1eff 0

/ GG   , which is much larger than the "true" work of adhesion  .  

6. Discussion and conclusion 

The intention of the present paper was not to solve a particular problem in the theory of adhesion but to 

raise a question: Is it possible to apply the energy balance by Griffith to adhesive contacts of viscoelastic 

materials? We argue that this might be possible, at least for a limited class of interface interactions, namely the 

"non-entropic" or "energetic" interfaces. The possibility of applying the energy balance to viscoelastic crack 

propagation is based on the well-known fact, that viscoelastic media when loaded or unloaded, always show a 

very rapid, pure elastic reaction followed by a longer viscoelastic relaxation. We argue that it is only this instant 

part of the energy relaxation which has to be equated to the work of adhesion. The argument is based on the 

consideration of scale separation: The detachment of elastic interfaces occurs (from a macroscopic point of 

view) instantly, and thus only the energy which can be released at this time scale is relevant. We have illustrated 

this idea for the case of quasistatic detachment of a viscoelastic solid and have shown, that even in this case 

the bodies cannot be considered as purely elastic, as the energy released at detachment is only a small part of 

the energy stored in the system. However, the JKR theory remains valid in this limiting case with the only 

correction that the true work of adhesion has to be replaced by a (much larger) effective work of adhesion. 

Formulation of the detachment criterion for this class of surfaces for the Boundary Element Method is also 

straightforward. In the general case, it seems that the concept of an "effective work of adhesion" is not 

applicable. We hope that this new view on the mechanics of viscoelastic cracks may contribute to the solution 

of some controversies in the theory of viscoelastic adhesive contacts (see e.g. Ciavarella et al., 2021). 

Finally, we would like to stress that the idea suggested in the present paper applies only to energetic 

interfaces and the "JKR-limit" (in the sense of infinitely small interaction range of adhesive forces). The cases 

of finite interaction range of adhesive forces (Derjagin et al. 1975) needs an additional consideration. 
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