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 This paper recommends a simple and excusive approach to a strongly 

nonlinear oscillator. Its frequency property can be immediately obtained by 

the simplest calculation. The results show that the method leads to an 

approximate solution with relatively high accuracy. Considering the simplest 

solution process, this paper provides a highly efficient tool for fast 

determination of the amplitude-frequency relationship of a nonlinear 

oscillator. The large amplitude vibration of a string is used as an example to 

illustrate the solution process. 
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1. Introduction 

Strings/ropes belong to the oldest means of transmitting a force and, therewith, also power over a 

distance. Their high flexibility offers means to transmit force through tightest and practically even 

unapproachable places. They are also characterized by high strength-to-weight ratio, quiet, smooth and free 

running, long life expectancy, capability of 3D movement in various directions and around bends, minimal 

maintenance costs. Those exquisite properties made them practically an inevitable element in numerous 

machineries today, including all kinds of cranes, ropeways, pulleys, etc. Being such an important element of 

various machines, consideration of their mechanical behavior and developing methods for fast assessment of 

important parameters of their mechanical behavior are worth of effort.    

Since a string has negligible flexural, torsional and shear stiffness and practically nearly zero buckling 

load, it can be idealized as a one-dimensional elastic continuum, which does not transmit bending and 

torsional moments and neither shear and longitudinal pressure forces. A vibrating string is at the same time 

one of the simplest example of a distributed parameter system, but also one of the most interesting ones. 

During vibration, a string deflects transversely, and quite often the achieved amplitudes call for consideration 

of nonlinear effects in order to reach suitable accuracy of the obtained results.  

We consider a string’s transverse vibration with a large amplitude as illustrated in Fig.1. The governing 

equation can be obtained as follows (Mahabadi & Pazhooh, 2018). 
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Figure 1. The transverse vibration of a string with a constant tension  

2 2 2(1 ( ) )xx x ttc w w w                     (1) 

with the following boundary conditions  

(0, ) ( , ) 0w t w L t                     (2) 

where w is the transverse displacement, = /c    is the transverse wave’s velocity,   and   are, 

respectively, the tension and the mass per unit length, respectively.  

We assume that the solution of Eq. (1) can be expressed as  

( , ) ( )sin( )
x

w x t u t
L

                    (3) 

By the Galerkin technology, we obtain the following nonlinear vibration of strings with large amplitude 

(Mahabadi & Pazhooh, 2018). 
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where β is a constant, A is the amplitude. Eq. (4) occurs in various fields, such as the long cable vibration, 

the bridge vibration, the MEMS vibration (Anjum & He, 2020a, 2020b, 2020c); He, et al., 2019; Lai, et al., 

2008; Skrzypacz, et al., 2019). 

Eq. (4) can be solved by various analytical methods, e.g., the variational iteration method, the homotopy 

perturbation method (He & Latifizadeh, 2020; He & El-Dib, 2020; He & Jin, 2020; He, 2020a, 2020b; He, 

2006). A fast insight into the frequency property is much needed in practical applications, so the solution 

process should be as simple as possible. In this paper we will apply the simplest method (He, 2019a,b) in all 

literature to fast elucidate the frequency property of Eq.(4), the method is called He’s frequency formulation 

and various modifications were appeared in literature (He, Wang, Yao, 2019; Wang & An, 2019; Ren & Hu, 

2019a, 2019b; Wang et al., 2019). 

2. He’s frequency formulation 

Consider the following nonlinear oscillator 

(0) , '(0) 0u A u                     (5) 

He’s frequency formulation is (He, 2019 a, b) 

2 ( )f NA

NA
  ,                   (6) 

where N is a constant, 0 1N  .  

Consider the Duffing oscillator (He, 2006) 

3'' + 0u u u  , (0) , '(0) 0u A u                     (7) 
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Eq. (6) leads to the following result 

2 21+ ( )NA                     (8)  

When we choose
3

0.8660
2

N   , we obtain 

23
1+

4
A                     (9) 

Eq. (9) is same as those obtained by the variational iteration method and the homotopy perturbation 

method(He 2006), so we recommend 0.8N   for fast insight into the frequency property of a practical 

problem. 

According to Eq.(6), the frequency of Eq.(4) can be written as  

2 41 1
1 ( ) ( )

2 8
NA NA


 

 

, 0 1N                     (10) 

The approximate solution is  

( ) cos( )u t A t                    (11) 

We choose 0.8N  , Table 1 and Figure 1 show the accuracy of the simplest estimation of Eq. (10). 

 

Table 1. Comparison of the approximate period with exact one when =1   

A Exact period 
Approximate 

period 2 /   

Relative error 

(%) 

0.1 6.294977 6.2932 0.0275 

0.2 6.33047 6.3235 0.1101 

0.5 6.58379 6.5393 0.6758 

5 41.918 40.2320 4.0221 

10 148.8 146.6824 1.4231 

 
  (a)                                                        (b)                                                        (c) 

(d)      (e)  

Figure 1. Comparison between the exact solution with the approximate solution. The 

discontinuous red line is the exact solution, the continuous blue line is the approximate solution for

=1 . A=0.1, 0.2, 0.5, 5, and 10 for (a)~(e), respectively. 
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3. Discussion and conclusion 

In this paper we recommend 0.8N  , an optimal choice can be made by the least square method 

2
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T A t
J N A t dt

A t A t
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  
    

   
                   (12) 

where 2 /T   , and   is given in Eq. (10). From Eq. (12), the value for N  can be optimally identified. 

This paper focuses itself on its simplicity and effectiveness of the simplest solution process.  

We conclude that He’s frequency formulation is the simplest method for the nonlinear oscillators, and its 

accuracy is acceptable. Considering the simplest solution process in literature, we predict this method can be 

accessible to all engineers and can deal with various nonlinear vibration problems with ease and it has almost 

the same accuracy as Hamiltonian-based frequency-amplitude formulation. 
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